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ABSTRACT 

In 1995 the U.S. Nuclear Regulatory Commission (NRC) published a summary of the state-of-the-art 
for the area of on-line monitoring prepared by the Analysis and Measurement Services Corporation as 
NUREG/CR-6343, On-Line Testing of Calibration of Process Instrumentation Channels in Nuclear 
Power Plants.  The conclusion of this report was that it is possible to monitor calibration drift of field 
sensor and associated signal electronics and determine performance of the instrument channels in a 
nonintrusive way.  

In 1998, the Electric Power Research Institute (EPRI) submitted Topical Report (TR) 104965, On-
Line Monitoring of Instrument Channel Performance for NRC review and approval.  This report 
demonstrated a nonintrusive method for monitoring the performance of instrument channels and 
extending calibration intervals required by technical specifications (TS).  A safety evaluation report 
(SER) was issued in 2000 in which NRC staff concluded that the generic concept of on-line monitoring 
(OLM) for tracking instrument performance as discussed in the topical report is acceptable.  However, 
they also listed 14 requirements that must be addressed by plant-specific license amendments if the TS-
required calibration frequency of safety-related instrumentation is to be relaxed.  The SER did not review 
or endorse either of the two methods addressed in the topical report.   

This report, published in three volumes, provides an overview of current technologies being applied 
in the United States for sensor calibration monitoring.  Volume 1—State-of-the-Art, provides a general 
overview of current sensor calibration monitoring technologies and their uncertainty analysis, a review of 
the supporting information necessary for assessing these techniques, and a cross reference between the 
literature and the requirements listed in the SER.  This volume entitled Volume 2—Theoretical Issues 
provides an independent evaluation of the application of the most commonly employed OLM methods.  
In empirical, model-based OLM, current measurements are applied to an algorithm that uses historical 
plant data to predict the plant’s current operating parameter values.  The deviation between the 
algorithm’s predicted parameter values and the measured plant parameters is used to detect any 
instrument faults, including instrument drift.  Many algorithms can be used to accomplish OLM; 
however, only auto-associative neural networks (AANN), auto-associative kernel regression (AAKR), 
and auto-associative multivariate state estimation technique (AAMSET) are investigated in this study.  
These techniques were chosen because they were either considered by EPRI’s OLM working group that 
started in the 1990s, applied in EPRI’s OLM Implementation Project which began in 2001, or are 
currently available as commercial products.  Volume 3—Limiting Case Studies explores the inherent 
assumptions in the model whose impact on OLM is not yet known and also investigates other special 
limiting cases where the model behavior is unknown.  The case studies reported in Volume 3 apply the 
modeling and uncertainty analysis techniques to a wide variety of plant data sets to consider the effects of 
these modeling assumptions and limitations.  

The inclusion of a particular method should not be construed as an NRC endorsement for that 
technique.  The theory behind each of these modeling techniques is explained in detail.  The uncertainty 
of the model’s prediction is also explained, as well as several methods for quantifying it.  This expanded 
discussion on uncertainty is presented because OLM model uncertainty is one of the most critical issues 
surrounding the general acceptance of OLM as a valid technique for sensor performance assessment.  If 
the uncertainty of the model is unknown, there can be no confidence in the model’s predictions, making 
OLM for calibration extension pointless.  Therefore, both analytical and Monte Carlo based uncertainty 
equations are developed for the three modeling techniques.  Finally, the AANN, AAKR, and AAMSET 
models, along with their corresponding uncertainty values, are compared using both simulated and actual 
nuclear data.  Although this comparison is theoretically thorough, it may not completely address the 
practical effects of the modeling assumptions and limitations.  Therefore, Volume 3 of this series presents 
the results of applying the models and uncertainty analyses to a wide variety of plant data including those 
that violate some of the modeling assumptions; it recommends how these limiting test cases can be 
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identified, quantifies the effects of not meeting certain assumptions, and presents precautions to take to 
assure the assumptions are met. 
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FOREWORD 

For the past two decades, the nuclear industry has attempted to move toward condition-based 
maintenance philosophies, using new technologies developed to ascertain the condition of plant equipment 
during operation.  Consequently, in November 1995 the U.S. Nuclear Regulatory Commission (NRC) 
published NUREG/CR-6343, On-Line Testing of Calibration of Process Instrumentation Channels in 
Nuclear Power Plants, which summarized the state-of-the-art in the area of OLM.  In that report, the 
NRC staff concluded that it is possible to monitor the calibration drift of field sensors and associated signal 
electronics, and determine performance of instrument channels in a nonintrusive way.  Then, in 1998, the 
Electric Power Research Institute (EPRI) submitted Topical Report (TR) 104965, On-Line Monitoring of 
Instrument Channel Performance, for NRC review and approval.  That report demonstrated a 
nonintrusive method for monitoring the performance of instrument channels and extending calibration 
intervals required by technical specifications (TS).  The NRC subsequently issued a related safety 
evaluation report (SER), dated July 24, 2000, in which the staff concluded that the generic concept of OLM is 
acceptable for use in tracking instrument performance as discussed in EPRI TR-104965.  However, the staff 
also listed 14 requirements that must be addressed in plant-specific license amendments if the NRC is to 
relax the TS-required calibration frequency for safety-related instrumentation.  The SER neither reviewed 
nor endorsed either of the two methods addressed in the topical report. 

This contractor-prepared NUREG-series report is the second volume of a three-volume set, 
which will provide an overview of current technologies being applied in the United States to monitor 
sensor calibration.  Volume 1, published in January 2006, provided a general overview of current sensor 
calibration monitoring technologies and their uncertainty analysis, a review of the supporting information 
needed to assess those techniques, and a cross-reference between the literature and the requirements listed 
in the staff’s SER.  To augment that overview, this second volume presents an in-depth theoretical study 
and independent review of the most widely used online sensor calibration monitoring techniques, 
including the underlying theory and an evaluation of the inherent assumptions.  The techniques reviewed 
in this volume were selected because they were considered by the EPRI OLM working group, were 
applied in the EPRI OLM Implementation Project, or are currently available as commercial products.  
By contrast, Volume 3, scheduled for publication by March 2008, will be dedicated to case studies that 
apply modeling and uncertainty analysis techniques to a wide variety of plant data sets to consider the 
effects of modeling assumptions and limitations. 

The NRC staff anticipates that readers will use this reference to quickly locate the technical 
information required to assess the methods presented in plant-specific applications.  This report 
is intended to provide the technical details that are necessary to conduct an accurate evaluation of each 
technique. This report should not be construed to imply that the NRC endorses any of the methods or 
technologies described herein; that is, a licensee would need to provide a complete description and 
justification for any proposed OLM approach. 

 
 

Brian W. Sheron, Director 
Office of Nuclear Regulatory Research 
U.S. Nuclear Regulatory Commission 
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EXECUTIVE SUMMARY 

For the past two decades, the nuclear industry has attempted to move toward condition-based 
maintenance philosophies using new technologies developed to ascertain the condition of plant equipment 
during operation.  Specifically, techniques have been developed to monitor the condition of sensors and 
their associated instrument loops while a plant is operating.  Historically, process instrumentation 
channels have been manually calibrated at each refueling outage.  This strategy is not optimal in that 
sensor conditions are only checked periodically.  Therefore, faulty sensors can continue to operate for 
periods up to the calibration frequency.  Periodic maintenance strategies cause the unnecessary calibration 
of instruments that are operating correctly, which can result in premature aging, damaged equipment, 
plant downtime, and improper calibration under nonservice conditions.  Recent studies have shown that 
less than 5% of process instrumentation being manually calibrated requires any correction at all [EPRI 
2004].  Thus, plants are interested in monitoring sensor performance during operation and only manually 
calibrating the sensors that require correction. 

In 1995, the Nuclear Regulatory Commission (NRC) published a summary of the state-of-the-art in 
the area of on-line monitoring; it was prepared by the Analysis and Measurement Services Corporation as 
NUREG/CR-6343, On-Line Testing of Calibration of Process Instrumentation Channels in Nuclear 
Power Plants.  This report concluded that it is possible to monitor the calibration drift of field sensors and 
associated signal electronics and to determine performance of the instrument channels in a nonintrusive 
way. 

In 1998, the Electric Power Research Institute (EPRI) submitted Topical Report TR-104965, 
On-Line Monitoring of Instrument Channel Performance, for NRC review and approval.  This report 
demonstrated a nonintrusive method for monitoring the performance of instrument channels and 
extending calibration intervals required by technical specifications (TS).  The calibration extension 
method requires an algorithm to estimate the process parameter.  The NRC issued a safety evaluation 
report (SER) on TR-104965 dated July 24, 2000, concluding that the generic concept of on-line 
monitoring (OLM) for tracking instrument performance as discussed in the topical report was acceptable.  
However, the report listed 14 requirements that must be addressed by plant-specific license amendments 
if the TS-required calibration frequency of safety-related instrumentation were to be relaxed.  Several of 
these requirements focused on the quantification of the uncertainty inherent in the process parameter 
predictions.  This report provides a theoretical review of the empirical modeling techniques and the 
development and comparison of several methods for uncertainty quantification. 

The goal of this three volume report, entitled Technical Review of On-Line Monitoring Techniques 
for Performance Assessment, is to provide the background and technical information necessary to assess 
the application of OLM techniques for sensor calibration extension.  Volume 1—State-of-the-Art provides 
a general overview of the technologies being implemented for sensor calibration monitoring and the 
techniques used to quantify the uncertainty inherent in the empirical process variable predictions.  It also 
provides a survey of the relevant information and a cross-reference between the relevant information and 
the 14 requirements.  The survey provides a quick reference used to locate the technical information 
required to assess the methods expected to be presented in plant-specific license amendments.  
Volume 2—Theoretical Issues presents an in-depth theoretical study and independent review of the most 
widely used OLM techniques.  It includes a presentation of the theory and an evaluation of the 
assumptions inherent in the empirical models and uncertainty quantification techniques.  Volume 3—
Limiting Case Studies investigates the effects of not meeting some of the modeling assumptions on model 
performance and uncertainty and gives guidance for identifying these situations. 

As the second in the series, this report reviews several sensor monitoring techniques currently being 
considered by U.S. nuclear utilities for OLM applications.  The methods evaluated in this report include 
auto-associative neural networks (AANN), auto-associative kernel regression (AAKR), and auto-
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associative multivariate state estimation technique (AAMSET).  Each of these methods is considered to 
be a plant-wide method, meaning that it calculates the parameter estimate using the plant historical data 
from a group of correlated, but not necessarily redundant, instrument channels.  The group of instruments 
that constitute the model may come from any part of the plant, although they are typically grouped by a 
single system or subsystem.  The theory and general application of these empirical methods are presented.  
Additionally, the report focuses on several methods used to quantify the uncertainties inherent in the 
model estimates.  These uncertainty quantification methods include on-line analytical equations and off-
line Monte Carlo-based techniques. 

The basic components of empirical modeling uncertainty are derived, and a practical comparison 
between several of the techniques for estimating the uncertainty components is presented.  In addition to 
describing the basic uncertainty components and how these can be quantified, the relationship between 
OLM and the nuclear plant’s set point calculations, in terms of calibration uncertainty, is explained.  
Finally, the methods are applied to both actual and simulated nuclear plant data so that their results can be 
compared and validated.   
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ACRONYMS 

AAKR auto-associative kernel regression 
AAMSET auto-associative Multivariate State Estimation Technique 
AANN auto-associative neural network 
ADVOLM  allowable deviation value for on-line monitoring 
ALARA as low as reasonably achievable 
ANL Argonne National Laboratory 
ANN Artificial Neural Network 
CFR Code of Federal Regulations 
CI confidence interval 
CLT Central Limit Theorem  
CSA Channel Statistical Allowance  
CU channel uncertainty 
DP differential pressure 
EESE Expert State Estimation Engine 
EPRI Electric Power Research Institute  
EULM error uncertainty limit monitoring 
HRP Halden Reactor Project 
IANN inferential artificial neural network 
ICA Independent Component Analysis 
ICMP Instrumentation and Calibration Monitoring Program 
ICV instrument calibration verification  
KBH thousands of pounds per hour (klbm/h)  
M&TE Measuring and Test Equipment 
MAVD maximum acceptable value of deviation 
MSE mean squared error 
MSET Multivariate State Estimation Technique  
NLPCA Nonlinear Principal Component Analysis 
NLPLS Nonlinear Partial Least Squares 
NRC Nuclear Regulatory Commission 
NUREG/CR NUREG prepared by a contractor 
OLM on-line monitoring 
OLS ordinary least squares 
PCA Principal Component Analysis 
PE  Process Parameter Estimate 
PEANO process evaluation and analysis by neural operators 
PI prediction interval 
PM Process Measurement Effects 
PSIA pounds per square inch atmospheric 
PSIG pounds per square inch gauge 
QA quality assurance 
RPSS Reactor Parameter Signal Simulator  
SCA Sensor Calibration Accuracy 
SD Sensor Drift 
SER Safety Evaluation Report  
SG Steam Generator 
SISO single input single output 
SMTE Sensor Measurement and Test Equipment Accuracy  
SPRT sequential probability ration test 
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SSE sum of the squared error 
TR  topical report  
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1. INTRODUCTION 

This volume is the second in the series of three.  It focuses on the technologies currently being 
investigated for on-line instrument calibration monitoring (OLM) by utilities in the United States.  
On-line monitoring can be implemented for instrument monitoring, equipment monitoring, or operation 
monitoring; however, the term OLM is typically used to mean instrument calibration monitoring and will 
be used that way in this report.  This volume explores the assumptions inherent in the technology and 
presents their impact on OLM.  In particular, this volume investigates predictive uncertainty in detail.  
Quantifying the predictive uncertainty is one of the most challenging yet critical steps in gaining 
regulatory acceptance for OLM. 

1.1 Background 

For the past two decades, nuclear power utilities have been exploring technologies that determine the 
condition of plant equipment while the plant is operating.  With these technologies, plants can implement 
more efficient condition-based maintenance strategies and replace some of the periodic maintenance tasks 
with a potentially more effective on-line method.  Of special interest are the techniques that monitor the 
condition of sensors and their associated instrument loops.  These techniques are commonly referred to as 
on-line monitoring (OLM) methods. 

Traditionally, instruments must be recalibrated at each refueling outage in accordance with nuclear 
regulations.  However, many utilities consider these mandatory periodic calibrations to be a suboptimal 
method.  One concern with the periodic calibrations is that they only check the sensor’s operating status at 
every fuel outage, meaning that faulty sensors may remain undetected for periods of up to 24 months.  
Also, studies have confirmed that it is very rare for a sensor to be found out of the required as-left as-
found calibration range; typically less than 5% of the 50 to 150 calibrated instruments are found in 
degraded condition that require maintenance [EPRI 2004].  Additionally, OLM has the potential to bring 
about considerable direct and indirect cost savings by reducing the number of unnecessary calibrations 
and from the consequential reduction in outage time and lower chance of an unnecessary plant trip.  
OLM may also provide as low as reasonably achievable (ALARA) benefits, with more prompt discovery 
of instrument problems and opportunities for more timely and convenient corrective action.  Furthermore, 
one of the greatest concerns with the periodic calibrations is that performing maintenance on components 
that are operating correctly provides an opportunity for a fault to enter the system.  Instead, the OLM 
methods will monitor the instrument channel condition and identify those that have degraded to an extent 
that warrants calibration.  The identified instrument channels will be investigated and then possibly 
classified as either normal, needing calibration at the next outage, or as entirely inoperable; based on the 
degree of degradation.  Proponents of these technologies expect on-line methods to reduce maintenance 
costs, reduce radiation exposure, reduce the potential for miscalibration, increase instrument reliability, 
and may, as a consequence, reduce equipment downtime. 

Because of the clear advantages brought about by OLM, several nuclear utilities are involved with 
testing and implementing these methods.  In England, Sizewell B has implemented OLM for sensor 
calibration extension which reduced their most recent refueling outage by several days.  However, for 
U.S. utilities to receive the full benefits of OLM, they must apply for plant-specific license amendments 
that grant regulatory approval to relax the calibration frequency.  An adequate review of the license 
amendments requires a sufficient background in the technical details of the OLM methods.  In particular, 
a thorough understanding of the uncertainty analysis associated with the particular modeling techniques is 
required.  This report was developed with the objective of providing the information needed to understand 
the critical technical issues associated with the current OLM methods.   
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Research and development during the 1990s resulted in Topical Report TR-104965, On-Line 
Monitoring of Instrument Channel Performance, developed by the Electric Power and Research Institute 
(EPRI) Utility On-Line Monitoring Working Group.  This EPRI report focused on the generic application 
of on-line monitoring techniques to be used as a tool for assessing instrument performance.  The report 
proposed a requirement to have one channel for each measured variable fully calibrated every refueling 
outage, with every channel fully calibrated every 8 years or less.  This would result in calibration every 
6 years for a three-channel measurement with a 24-month refueling cycle, and every 4 years for a two-
channel measurement in a similar plant.  The maximum interval would be 6 years for a four-channel 
variable in a plant with an 18-month refueling interval.  In July 2000, the U.S. Nuclear Regulatory 
Commission (NRC) issued a safety evaluation report (SER), released in September 2000.  The SER 
concluded that the generic concept of OLM for tracking instrument performance as discussed in the 
topical report was acceptable.  However, they also listed 14 requirements that must be addressed by plant-
specific license amendments if the TS-required calibration frequency of safety-related instrumentation is 
to be relaxed.  A later version of the EPRI topical report addresses these 14 requirements [EPRI 2000].  In 
turn, this volume of the NUREG/CR presents an in-depth theoretical study and independent review of the 
most widely used OLM sensor calibration techniques.  It includes a presentation of the theory and an 
evaluation of the assumptions inherent in the methods.  It should not be construed as an NRC 
endorsement of any of the described methods or technologies.   

The instrument channel calibration monitoring methods presented in this report are empirical in 
nature.  Empirical models are used over first-principle models because first principle models have not yet 
been proven to provide the accuracy necessary for calibration verification.  With empirical modeling, 
historical plant data are used to construct the predictive models.  Plant data sampled from past operating 
conditions embody the normal relationships between the process variables.  After the predictive models 
are constructed, they are put into a monitoring mode to provide the best estimates of process variables for 
previously unseen data. 

Figure 1-1 is a simple block diagram of a basic instrument calibration monitoring system.  In this 
figure, a vector of sensor measurements (x) is input to a prediction model that calculates the best 
estimates of the sensors (x').  The estimates are compared to the measured values, forming differences 
called residuals (r).  A decision logic module determines if the residuals are statistically different from 
zero and establishes the health or status (s) of each sensor.  This module may also use predictive 
uncertainty values and drift limits to determine the condition of the instrument channel.  The first volume 
in this series addresses how to establish the maximum acceptable value of deviation (MAVD) and 
allowable deviation value for on-line monitoring (ADVOLM), which are the conservative limits that are 
used to identify the onset of a drift problem.   

Originally, EPRI assumed that OLM would be performed continuously and wrote the EPRI-TR-
10495 report to reflect this fact; however, several members of the EPRI user’s group have shifted to a 
periodic procedure [EPRI 2000].  The SER stated that quarterly monitoring is acceptable, so it is probable 
that some plants applying for a license amendment will wish to perform OLM in off-line batch mode on a 
quarterly basis.  However, this NUREG/CR advocates the use of continuous or near-continuous 
monitoring.  Continuous or near-continuous monitoring offers an added level of safety because instrument 
channels are surveillanced more frequently and problems can be identified much sooner.  With 
continuous monitoring, communications and capacity issues may arise, but can be combated with a 
superior computer and network infrastructure.  Additionally, when not applying OLM continuously, an 
additional margin must be subtracted from the drift limits (ADVOLM and MAVD) equal to the amount 
an instrument may drift in the next 3 months.  Care must be taken to make sure plants have accounted for 
this margin and that they understand that they cannot switch from a continuous to quarterly surveillance 
OLM system without recalculating the ADVOLM and MAVD.   
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Fig. 1-1.  Instrument calibration monitoring system diagram. 

 
Although Fig. 1-1 may imply that OLM is a relatively simple process, it can actually be very 

complicated.  There are many choices regarding the type of prediction model to use, and many of these 
models are quite complex.  This report addresses three of the most widely employed nonredundant 
prediction models for OLM, namely, auto-associative neural networks (AANN), auto-associative kernel 
regression (AAKR), and auto-associative multivariate state estimation technique (AAMSET).  All of 
these methods are plant-wide methods, meaning that they calculate the parameter estimate using the plant 
historical data from a group of correlated, but not necessarily redundant, instrument channels.  These 
instruments may take measurements from any part of the plant’s operation, although they are typically 
grouped by a single system or subsystem.   

In contrast to the plant-wide model, redundant sensor models have been used to perform OLM.  
Redundant modeling techniques use only the measurements from a group of redundant instrument 
channels to obtain the parameter estimate.  In this context, the term “redundant” describes instrument 
channels that measure the same process parameter over a similar operating range.  An example of a 
redundant method would be simple averaging.  Although redundant techniques are generally more 
intuitive and easier to troubleshoot than nonredundant techniques, they are unable to detect common 
mode failure and also may be more affected by spillover, which occurs when a faulty sensor input 
degrades the predictions for the other sensors in the group.  Because of the disadvantages associated with 
the redundant models, the nonredundant models are becoming the dominating technique for OLM 
applications and are the focus of this report.  However, the Instrumentation and Calibration Monitoring 
Program (ICMP), a redundant algorithm originally employed by several members of the EPRI Utility 
On-Line Monitoring Working Group, is briefly described in Chap. 2.   

The three nonredundant methods highlighted in this report are by no means the only technologies 
that are viable for OLM applications.  Rather, they are included simply because they are the techniques 
being currently employed by the utilities closest to filing for the first license amendment.  The 
U.S. nuclear plants that have considered or are actively using OLM for equipment and instrumentation 
assessment (without the relaxed calibration frequency) include Limerick, Salem, Sequoyah, TMI, and 
VC Summer, all of which use a system produced by Expert Microsystems, Inc. (expmicrosys.com), and 
Harris and Palo Verde, which use a system developed by SmartSignal Inc. (smartsignal.com).  The 
underlying algorithm for Expert Microsystems’ software is the AAKR, while SmartSignal software 
utilizes AAMSET.  An AANN OLM system was developed by researchers at the Halden Reactor Project 
(HRP) in Norway and has been tested by several nuclear facilities throughout Europe.  

Again, many other algorithms are suitable for OLM, including several redundant techniques.  
Nuclear plants are in no way limited to the three methods described in this report.  However, before filing 
for a license amendment to extend the calibration frequency with OLM, it is necessary for the details of 
the algorithm, especially the uncertainty analysis portion, to be fully understood and made available for 
regulatory review.  The algorithms cannot be treated as a black box.  The technical aspects must be 
known, so that safeguards can be put into place to account for any inherent deficiencies or limitations that 
the algorithm may have.   

 3



 

1.2 Organization of this Report 

The goal of this report is to provide an independent evaluation of the most current OLM techniques 
that may eventually be used to reduce the required manual calibration frequency of safety critical 
instrument channels.  The first section of the report gives a general overview of OLM.  Next, in Chap. 2, 
the general properties of data-based models are described.  After establishing the basic theory behind 
empirical modeling, equations are derived for the three modeling techniques that are most applicable to 
OLM systems:  auto-associative neural networks (AANN), auto-associative kernel regression (AAKR), 
and auto-associative multivariate state estimation technique (AAMSET).  The general framework for 
estimating a model’s predictive uncertainty is then presented.  Uncertainty is a key issue surrounding the 
regulatory approval of OLM.  The discussion of uncertainty in Sect. 3.4 of EPRI TR-104965-R1 NRC 
SER argues that the past MSET performance and a Monte Carlo analysis will provide the required 
evidence [EPRI 2000].  However, determining the predictive uncertainty is much more complicated than 
was addressed in the EPRI paper.  Thus, this report outlines the problem of estimating uncertainty in great 
detail and provides a set of well-defined equations and requirements that need to be addressed by OLM 
systems.  The equations are derived for both the analytical and Monte Carlo method for estimating 
uncertainty.  In Chap. 6, both simulated and actual nuclear plant data are used to compare the modeling 
techniques and the different uncertainty estimation methods.  Finally, Chap. 7 concludes the report by 
listing some of the assumptions inherent in the OLM modeling process that could present potential 
problems if not handled properly.  Many of these assumptions are concealed until an abnormality occurs 
in the OLM system, and they have not been fully explored.  Thus, the third volume of this report will 
apply the modeling and uncertainty analysis techniques to a wide variety of plant data sets to investigate 
the effects of these modeling assumptions and limitations.  
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2. MODELING TECHNIQUES 

2.1 Introduction 

Modeling involves the use of a chosen technique to describe an event or situation.  This introduction 
focuses on modeling a process by learning the relationships between process parameters and how this 
methodology relates to empirical modeling.  There are two major system modeling categories: first-
principles models and data-based (empirical) models.  This section discusses the advantages and 
disadvantages of these two methods, explores data-based modeling in more detail, describes how data-
based modeling relates to instrument calibration monitoring systems, reviews redundant sensor 
monitoring, and discusses the historical development of the three commercially available empirical 
modeling techniques. 

2.1.1 First-principles vs data-based 

Modern science and engineering is based on first-principle models (e.g., Newton’s Laws).  These 
models are usually developed during the design phase of developing a complex process plant.  The major 
advantage of using first-principle models to describe process variable interactions is that they are based 
on physical equations.  Usually, experimental data are used to verify the models, but there is a great deal 
of certainty in the accuracy of the models before a plant is ever built.  First-principles models require 
substantial engineering time to develop; and in some instances, such as complex chemical reactions, 
accurate first-principles models are not available.  Even if a highly accurate first-principles model is 
developed for a newly constructed process, operations will degrade or otherwise change the system from 
its design basis.  In fact, first-principles models rarely incorporate all of the functionality of the system 
being modeled and do not provide the sensitivity necessary to detect slight changes in plant degradation.   

Data-based models are constructed by collecting process parameter measurements recorded over the 
operating range of a plant.  Shutdown and start-up data are not always included, but in general, 
monitoring over the entire operating range is beneficial because it will help reduce the single-point 
monitoring penalties which were discussed in Volume 1 of this series.  The relationships between the 
sensor measurements are somehow learned or embedded in the model architecture.  Because these 
relationships are usually nonlinear; flexible, nonlinear models are commonly used.  These nonlinear, data-
based systems are only accurate when applied to the same, or similar, operating conditions under which 
the data were collected.  When plant conditions or operations change significantly, the model is forced to 
extrapolate outside the learned space, and the results cannot be trusted.  Unlike linear models, which 
extrapolate in a known linear fashion, nonlinear models have poor extrapolation capabilities because it is 
impossible to predict how the system will respond outside of the previously observed operating 
conditions.  Nonlinear models should be monitored for these conditions and should not be used outside 
their area of expertise.  Systems designed to perform this function are commonly termed reliability 
assessment modules because they assess the reliability of the OLM system. Additionally, data-acquisition 
systems may not have acquired data on the conditions of interest, or the collected data may not have the 
accuracy and resolution required for the modeling task.  Automated techniques and expert analysis based 
on human observation are needed to ensure that the collected data are suitable for OLM model 
construction and to ensure the usability of the modeling results. 

The combination of data-based and first-principles models are termed hybrid models.  In these 
designs, first-principles models are developed and improved with data-based models as data become 
available.  These methods provide the robustness of first-principles models with the sensitivity of data-
based models.  This hybrid framework, although more complicated, has a very important advantage.  
Purely data-based systems are not reliable when the monitored process moves into new operating 
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conditions that may result from configuration changes, new operating practices, or external factors such 
as unusually cold cooling-water temperatures in condensers.  Through proper application of hybrid 
systems, the predictions can be forced to revert toward the first-principles model when new operating 
conditions are encountered and will use the data-based models when in familiar operating conditions. 

Several useful overview papers on hybrid modeling include Thompson and Kramer (1994), Wilson 
and Zorsetto (1997), and te Braake and van Can (1998).  The hybrid approach has commonly been termed 
a “grey-box” modeling approach, as contrasted to “black box” modeling of neural networks or other data-
based approaches.  The term “grey-box” comes from the idea that a portion of the internal model (i.e., the 
first-principles model) is explainable.  In other technical papers these approaches are termed “semi-
mechanistic” models.  Several of the papers on “semi-mechanistic” models focus on the development of 
accurate, robust, repeatable, empirical models, but all of the “semi-mechanistic” techniques can be 
applied to the data-based portion of hybrid modeling.  Because hybrid modeling also requires the 
development of highly accurate first-principles models, it is not currently being tested in the nuclear 
industry and is beyond the scope of this report. 

2.1.2 Learning from data 

Modern complex systems almost always have an array of digital monitoring systems including 
transducers, signal processors, and displays.  Many industries already employ complex modeling systems 
and have these digital monitoring systems.  Some of the processors and displays found in these systems 
include either theoretical (first-principles) models or data-based models of the processes.  For example, in 
addition to the normal (operational) indications of miles traveled, coolant temperature, oil pressure, fuel 
remaining, and electrical generator output, some automobiles include a simple data processing system that 
displays instantaneous and average miles per gallon, average speed, and estimated miles remaining until 
the gasoline tank is empty.  Such a system is an example of the use of a first-principles model (involving 
simple mathematical operations) in which the miles traveled is divided by the change in fuel over a very 
short period of time or the lapsed time since the car started to produce the instantaneous and average 
miles per gallon.  For such a model, the inputs would be the change in the amount of fuel and the elapsed 
time, while the output would be an estimate of the miles per gallon.  Similarly, multiplication of the fuel 
remaining by the miles per gallon gives the estimated miles remaining before the tank is empty. 

The above system is a classical example of a “direct” model in which measured inputs and a model 
are used to produce an output.  Such a system is shown in Fig. 2-1(a), where X is the input, Y is the 
output, and M is the system matrix representing the system model.  The input-output relationship for such 
a model is given by: 

 
.  (2.1.2.1) .=Y M X
 

If one knows the input X and the model matrix M, one can solve for the output Y.  For instance, if the 
input is an impulse, and the matrix represents a stable second-order polynomial system, the output will be 
a smoothed sinusoidal function.  The system matrix M is effectively a smoothing function that smoothes 
out the sinusoidal response to the input impulse [Schimek 2000]. 
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Fig. 2-1.  Modeling diagrams for (a) a direct input-output system and (b) an inverse input-output system. 

 

However, if one knows the output Y and the model matrix, M, one must invert the above relationship 
to obtain the input X, as follows: 

 
 1 .−=X M Y  (2.1.2.2) 
 

This is generally known as an “inverse problem” because the normal input-output (i.e., the cause-
and-effect) relationship, is reversed as shown in Fig. 2-1(b).  In this case, the smoothed sinusoid is now 
the input, and the impulse is the output.  Mathematically, this is possible if the system matrix M can be 
inverted.  However, the inverted system matrix M−1 is now the inverse of a smoothing function, or a 
“roughening” function, in which small perturbations would be enlarged, producing an erratic influence on 
the prediction of X.  The presence of even a very small amount of noise in the input signal (Y) could result 
in an unstable situation.  This is a result of the problem being ill-posed, a special type of problems 
discussed in detail in the next section.  In most cases, the system matrix M probably cannot be inverted 
mathematically.  As a result, the relationship implied by Eq. (2.1.2.2 ) would not be feasible.  Even if it 
could be inverted, the presence of noise could produce meaningless results.  Approximate methods of 
inverting a matrix exist and can sometimes be used to obtain reasonable results.  However, as discussed 
below, care must be taken because the inverse problem may also be an “ill-posed” problem.  Indeed most 
inverse problems (but not all) are ill-posed.  Methods of dealing with this situation will be discussed 
extensively in the following section. 

A similar inverse situation exists if one tries to obtain the system matrix M from the input X and the 
output Y.  The relationship now becomes: 

 
  (2.1.2.3) 1 .−=M Y X
 

If the input function X is unknown or cannot be inverted, the relationship of Eq. (2.1.2.3) is not valid 
and hence cannot be used.  Furthermore, if either the input X or the output Y contains significant noise, 
the relationship of Eq. (2.1.2.3) could be seriously compromised.  However, in some situations, where the 
input is known to be a good approximation to a white noise over the frequency range of interest, the 
relationship of Eq. (2.1.2.3) can be used because X −1 is constant over the range of interest.  Hence M is 
proportional to Y.  

Most practical measurements in real systems have one feature in common: they involve, in some 
form, the process of inversion.  The reason is that most measured quantities are outputs of the system, and 
the desired results are either the inputs or, more commonly, the system characteristics described by M.  
This means going from effect to cause, for example, from a finite set of noisy (output) data to a general 
law governing this set of data or from a system’s output to its input.  In general terms, one has to 
reconstruct, from some manifestation of a state of nature or a system, the characteristics of this state of 
nature or system.  Inverse problems per se have been known to mathematicians for many decades, but 
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only recently have methods developed in inverse theory  been applied by engineers to real problems of 
surveillance, sensor validation, model building, and verification. 

2.1.3 Ill-posed problems and regularization 

For centuries, mathematicians have known that many very important practical problems are 
underdetermined.  In other words, data do not provide enough information to determine a single unique 
solution or relationship.  Examples of underdetermined problems are almost endless in every field, such 
as spectrum analysis, image reconstruction, interpolation and extrapolation from numerical data, factor 
analysis, solution of the diffusion equation backward in time, de-convolution, and neural network 
training.  Such underdetermined problems have a special name: they are “ill-posed” problems or 
incorrectly posed problems in the sense that it is incorrect to ask somebody to solve a problem that has no 
unique solution.  An important subclass of ill-posed problems is inverse problems that deal with the 
inversion of cause-effect relationships.  Most inverse problems are ill-posed, and the terms “ill-posed” 
and “inverse” are often used as synonyms.  However, it is important to understand that an inverse 
problem might not be an ill-posed problem, just as an ill-posed problem need not necessarily be an 
inverse problem.   

Because the goal of empirical modeling is to learn relationships from historical data, it is by 
definition an inverse problem.  Furthermore, since modeling techniques will never have a “complete” set 
of information and will never be perfectly specified (i.e., an empirical model’s input-output relationship 
will never be exactly correct), ill-posed problems are ubiquitous.  How does this affect instrument 
calibration validation systems?  Because uncertainty is fundamentally related to a model’s stability (i.e., 
low uncertainty implies a stable model), the identification and management of ill-posed problems is 
extremely important.   

In the fields of biology, econometrics, geophysics, machine and plant diagnostics, and surveillance, 
truly well-posed problems are practically unknown because the true input parameter values are not 
known; only their measurements are known.  In spite of the prevalence of such ill-posed problems, the 
implications and significance of inverse and ill-posed problems are often not fully understood and 
appreciated by the engineering community.  Until recently, the vast majority of practicing engineers was 
unaware of inverse problems and hence did not have the type of “inverse” mentality necessary in 
resolving practical engineering problems.   

During the past decade much research has been performed on methods that deal with ill-posed and 
inverse problems in engineering.  It has become clear that the ability to reason and build models in under-
determined situations is critical; even more critical is the ability to decide which of several competing 
models is best.  Unfortunately, raw data are of limited use in such situations because they may point to a 
number of models or to a unique model that is incorrect.   

Much of the work done in inverse theory can be considered to be a special case of inductive 
inference, which is the process of inferring a general law, or model, from a finite set of observable 
instances.  An attempt to apply methods of inverse theory to the process of model development is a 
natural next step.  The greatest contribution of inverse theory to the solution of the problem of inductive 
inference has been the introduction of “regularization” methods.  Regularization is the procedure used to 
augment information in the data with some additional information about the sought solution that might be 
available from outside the collected data.  A classic example of regularization is the solution of Fredholm 
integral equations, where information contained in the data is augmented by an additional assumption 
about the “smoothness” of a sought solution.  Another example, from statistics, is ridge regression 
[Hoerl 1970] where instead of minimizing a “self-evident” least-squares function, one minimizes a 
“nonself-evident” cost function consisting of a combination (sum) of two terms: a least-squares term and 
norm or semi-norm of the vector of regression coefficients.  This idea of augmenting the data by some 
additional information has been implemented in a number of methods and under different names to solve 
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the problem of induction.  Different methods to produce consistent, reliable, and low-noise results, such 
as numerical inversion like Tikhonov regularization [Tikhonov 1963], truncated single value 
decomposition (TSVD), and ridge regression, as well as such methods’ applicability to experimental 
measurements, will now be discussed. 

Hadamard [1923] defined a well-posed problem as a problem that satisfies the three following 
conditions: 

1.  A solution for the problem exists. 
2.  The solution is unique. 
3.  The solution is stable or smooth under small perturbations of the data (i.e., small 

perturbations in the data should produce only small perturbations in the solution). 

If any of these conditions are not met, the problem is termed “ill-posed,” and special considerations 
must be taken to ensure consistent reliable solutions.  To understand the essence of ill-posed problems, 
consider the linear least-squares model, whose objective is to find a linear combination of predictor 
variables X that accurately models the response variable Y. 

The ordinary least-squares (OLS) solution is given by: 

 

  (2.1.3.1) ( ) 1
,

−
= T Tw X X X Y

 
which minimizes the ordinary least-squares function: 

 
 ( ) (( ) .= − −T )E w Y X w Y X w  (2.1.3.2) 

 

This solution involves the inversion of what is commonly called the Fisher information matrix, XT X.  
If the predictors (X) are highly correlated, this matrix is ill-conditioned, and small changes in the predictor 
data cause significant changes in the solution weights (w).   

A measure of condition is the ratio of the largest Eigen value to the smallest Eigen value; this ratio is 
commonly called the “condition number.”  The numerical inversion of ill-conditioned matrices causes 
unstable solutions, which means that a problem is ill-posed.  The difficulty of constructing prediction 
models with correlated data is not restricted to linear regression models but also occurs, with even greater 
instabilities, in such nonlinear modeling techniques as neural networks.  

2.1.4 Parametric vs nonparametric models 

An empirical model’s architecture may be either defined by a set of parameters and functional 
relationships (parametric) or a set of data and algorithmic estimation procedures (nonparametric).  In a 
parametric model, training data are used to fit the model to the data according to a predefined 
mathematical structure.  For example, consider the following polynomial model: 

 

 2 2
0 1 1 2 2 3 1 2 4 1 5 2 .= + + + + +y b b x b x b x x b x b x  (2.1.4.1) 

 
To completely define this model for a given set of training observations, the polynomial coefficients 

bi are varied until they minimize some objective function, usually the sum of the squared error (SSE).  
Once the optimal polynomial coefficients have been estimated, the model is completely specified by 
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Eq. (2.1.4.1) and the estimated coefficients.  Therefore, a parametric model may be roughly defined as a 
model that can be completely specified by a set of parameters and a functional relationship for applying 
these parameters to new data in order to estimate the response. 

A nonparametric model, by contrast, stores past data exemplars in memory and processes them when 
a new query is made.  For instance, rather than modeling a whole input space with a parametric model 
such as a neural network or linear regression, local nonparametric techniques may be used to construct a 
local model in the immediate region of the query.  These models are constructed “on the fly” not 
beforehand.  When the query is made, the algorithm locates training exemplars in its vicinity and 
performs a weighted regression with the nearby observations.  The observations are weighted with respect 
to their proximity to the query point.  To construct a robust local model, one must define a distance 
function to measure what is considered to be local to the query, implement locally weighted regression, 
and in some cases consider additional regularization techniques.   

Several trade-offs need to be considered before deciding whether a parametric or nonparametric 
model should be used.  One of the most obvious features of a parametric model is that its architecture and 
behavior are well defined.  This feature is both an advantage and disadvantage.  On one hand, by knowing 
the parameters and functional relationship, the parametric architecture may be very small, compared to 
the training data.  Additionally, the model is easily conceptualized because most engineers and scientists 
have been exposed to many of the functions that may be used, while nonparametric techniques require a 
level of abstraction because the model will be different for different query vectors.  Finally, parametric 
models tend to require less time to estimate an output value, since its structure has been defined up-front, 
whereas in a nonparametric model, a new structure must be inferred for each query vector.   

On the other hand, when a model is restricted to a specific functional relationship, if the data do not 
follow this relationship, its estimates are inherently biased.  In either modeling case, if the system being 
modeled moves into a new operating region, the functional relationship may no longer hold, or the model 
may need to be retrained.  The issue of retraining is not necessarily problematic in most parametric 
techniques, but it can lead to problems when complex nonlinear techniques such as neural networks are 
used, because training may require extensive computational effort and may produce inconsistent results as 
a result of the randomization used in network initialization and inherent local minima.  Conversely, a 
nonparametric model may continuously adapt to additional operating regions because new exemplary 
observations may be easily added to the training data, which is often used to create the model’s “memory” 
matrix, usually a subset of the training data.  However, in OLM applications, the model developer should 
limit retraining to times when the situation is fully investigated and it is clear why the retraining is 
necessary.  This investigation is necessary to ensure that the model does not learn drifts or other 
anomalies as if they were normal operations. 

2.1.5 Inferential, heteroassociative, and auto-associative models 

An additional classification used to describe an empirical model, is according to whether it is 
inferential, heteroassociative, or auto-associative.  An inferential model uses a set of predictor variables to 
infer the values of a response variable [see Fig. 2-2(a)].  For example, the temperature change of the water 
for each channel in a nuclear reactor fuel assembly may be used to infer the heat generated by the entire 
assembly.  This model may be expanded to a heteroassociative architecture having multiple inputs and 
outputs, where the response variables are the heat generated for each channel [see Fig. 2-2(b)].  The 
distinction between inferential and heteroassociative models is that inferential models produce a single 
estimate, while a heterassociative model is able to produce multiple parameter estimates.  Inferential and 
heteroassociative models are generally applied to situations where a dependency is known and a 
parameter’s measured value is compared to a model’s predictions to identify a change in the dependency 
(an example is inferential estimation of nuclear power plant feedwater flowrate in order to monitor 
venturi fouling [Gribok et al. 2004]). 
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Fig. 2-2.  Schematic diagram of (a) inferential and (b) heteroassociative models. 

 
An auto-associative model is a model whose outputs are trained to emulate its inputs over an 

appropriate dynamic range (see Fig, 2-3).  Since measured plant data are often corrupted by noise, faults, 
and/or biases; an auto-associative model may be used to estimate the true parameter values.  Here, “true” 
refers to the values collected during normal operations used to train the model, or denoised versions of 
those fault-free measurements.  In other words, an auto-associative model will estimate the correct input 
values using the correlations (relationships) embedded in the model during its training.  The estimated 
correct value from the auto-associative model can then be compared to the actual process parameter to 
determine if a sensor has drifted or has been degraded by another fault type.   

 

 
 

Fig. 2-3.  Schematic diagram for auto-associative model. 

 

2.1.6 Empirical modeling in calibration monitoring systems 

Now that the generalities of empirical modeling have been discussed, how does empirical modeling 
fit into a calibration monitoring system?  This relationship is explained by first considering an instrument 
calibration monitoring system’s process diagram, as presented in Fig. 2-4. 
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Fig. 2-4.  Process diagram for generic calibration monitoring system. 

 
It can be seen that the first step in developing a calibration monitoring system is to collect training 

data and develop an empirical model.  Next, process measurements, typically termed query data, are 
presented to the developed model, which corrects the data.  The measured values are subtracted from the 
corrected values (where corrected values refer to a model’s estimates), providing the model’s prediction 
error or residual.  In addition, the 95% uncertainty, or variance, of the model’s estimates is calculated and 
combined with the error to form its 95% confidence interval (CI).  This CI is then compared to acceptable 
calibration limits, and if the limit is exceeded, then the instrument channel’s condition must be 
investigated.  After this investigation, one of three possible outcomes will result: 

1.  do not calibrate,  
2.  schedule a calibration, or 
3.  declare the sensor to be inoperable.   

The level settings, the investigation details, and the procedure for making calibration decisions are 
expected to be plant specific and defined in a plant’s license amendments.  Specifically, Technical 
Specifications will need to be modified to accommodate the altered test intervals.  However, EPRI’s 
OLM user group recommends only implementing sensor calibration extension when the modeling error is 
smaller than the drift uncertainties so that set point calculations will remain unmodified.  Other utilities 
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may choose to recalculate set points by incorporating the prediction uncertainties into the set point 
calculations, but this has not bee investigated to date. 

From this discussion, it is clear that the empirical model performs the most critical task of the 
calibration monitoring system by computing the process parameter estimate for a given system state.  In 
addition, notice that the auto-associative architecture is well-suited for OLM because of the “correcting 
action” it performs.  With this correcting action, the model estimates the “error-free” value, and this 
estimate can be used to calculate the residual that is used with the uncertainty, sensitivity measurements, 
and drift limits to determine the calibration status of each sensor. 

2.1.7 Review of redundant sensor monitoring—ICMP 

The Instrumentation and Calibration Monitoring Program (ICMP) algorithm is used for OLM of 
redundant sensor groups.  It was developed by EPRI in the early 1990s and essentially was the original 
method used to perform OLM for sensor calibration monitoring [EPRI 1993].  In ICMP, a weighted 
averaging algorithm is used to determine an estimate of the true process parameter.  The ICMP algorithm 
assigns a consistency value, Ci, to each of the signals for each data sample evaluated.  This consistency 
value denotes how much of the signal’s measured value contributes to the process estimate.  The value is 
based on the absolute difference between a given sensor and other sensors in the group.  Thus, 
inconsistent signals contribute less to the process estimate.  For example, for a group of three redundant 
sensors, the constituency value compares the output of each instrument to the output of the other two 
instruments.  If the ith instrument’s output is sufficiently close to the output of both of the other 
instruments, its consistency value, Ci, will be 2.  However, if the ith instrument’s output is only 
sufficiently close to one of the other instruments, then the Ci will be 1.  If the ith instrument’s output is 
not close to either of the two remaining instruments, then the consistency value, Ci, will be 0.  Overall, if 
a signal agrees within a tolerance to another signal in the group it is declared to be consistent, and the 
consistency value for that signal, Ci, is found with Eq. (2.1.7.1). 

 
 If ,− < δ + δi j i jm m then Ci = Ci + 1  , (2.1.7.1) 

 
where 

Ci =  the consistency value of the ith signal, 
mi = signal i’s measured value, 
mj =  signal j’s measured value, 
δi =  the consistency check allowance for instrument i, 
δj =  the consistency check allowance for instrument j. 

 
The values for the consistency check allowances are dependent on the uncertainty present in the 

signals, such as  

 

 2 .− ≤ δi jm m  (2.1.7.2) 

 
After the consistency values are calculated, the ICMP parameter estimate can be calculated as 
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where 

 = the ICMP parameter estimate for 

 wi = the weight associated with the ith signal. 

e weight values are included to allow the user to apply a greater weighting to more accurate or 
liable sensors within a ll weight values 
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The consistency check factor controls the influence of an individual signal on the ICMP parameter 

stimate.  If all sensors are considered equally consistent, th
the redundant sensors.  If a sensor’s consistency value is zero, it will not influence the parameter estimate.  

are inconsistent, the parameter estimate is undefined. 

e e ICMP estimate is just the simple average of 

If all sensors 

Once the parameter estimate is calculated, the ICMP algorithm evaluates the performance of each 
individual sensor relative to the parameter estimate.  This is done through the use of an acceptance 
criterion. 

 
 If, ˆ ,− ≥ αi ix m  then mi has potentially drifted beyond desired limits  , (2.1.7

 
where α  =

.5) 

i  the acceptance criterion for the ith signal. 

en the
deviation between a sensor’s meas accept
riterion, that sensor is considered to have drifted out of calibration.  At this point the sensor is assumed 

sarily disallow the failed sensor’s 

 of 

 

  

There may be a different acceptance criterion related to calibration or operability.  Wh  
urement and the current parameter estimate exceeds the ance 

c
to have failed.  Note that failing the acceptance criterion does not neces
value to influence the ICMP estimate.  The consistency check factor must also be exceeded, and it is not 
necessarily related to the acceptance criterion.  The 2002 paper “Monte Carlo Analysis and Evaluation
the Instrumentation and Calibration Monitoring Program” further details the relationship between the 
acceptance criteria and the consistency check factor and also provides numerical examples of the ICMP 
algorithm for a variety of redundant sensor groups [Rasmussen 2002]. 

ICMP software was successfully installed at the Catawba and V.C. Summer Nuclear Stations [EPRI 
2000].  Although these plants were using ICMP only as a performance monitoring and troubleshooting 
tool, they obtained positive results.  These results helped to verify ICMP’s diagnostic capabilities.  The 
plants did note some of ICMP’s inherent shortcomings.  For instance, ICMP performed poorly when there 
was limited redundant instrumentation, as is normally found on the secondary side of a nuclear plant.  
ICMP is also unable to detect common mode drift failure (where all redundant instruments drift in the 
same direction at the same rate) during plant operation; whereas nonredundant models are able to detect
this type of failure.  However, as current calibration practices offer limited protection against common 
mode failure while the plant is operating, ICMP’s inability to do so should not invalidate the technique.  
Since in OLM, at least one sensor will still be required to be calibrated during each outage, the same 
protection against common mode sensor failure that is provided by current calibration exists with ICMP.
Typically, common mode failure of rack instrumentation would be detected every 3 months, and sensor 
common mode failure would be detected during manual calibrations, which are required to be performed 
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during each refueling outage.  Nonredundant OLM techniques can detect common mode failure at the 
monitoring interval, which could be continuous.  Still, due to some of ICMP’s limitations, most plants
(including V.C. Summer and Catawba) have migrated to the more advanced OLM modeling techniques, 
such as AANN, AAKR, and AAMSET.  For more information about the algorithm and how to quantify 
its associated uncertainty see Monte Carlo Simulation and Uncertainty Analysis of the Instrument 
Calibration and Monitoring Program [EPRI 1995] and Monte Carlo Analysis and Evaluation of the 
Instrumentation and Calibration Monitoring Program [Rasmussen 2002]. 

2.1.8 Historical development 

Early pioneers in the use of advanced information-processing techniques for instrument conditio
monitoring included researchers at the University of Tennessee–Knoxville 

 

n 
(UT) and Argonne National 

Laboratory.  Dr. Belle Upadhyaya was one of the original investigators in the early 1980s [Upadhyaya 
nt of Energy-funded research project to investigate the application 

plants.  Researchers at Argonne National Laboratory 
cont

 

eloped 
999]; it 

 

Studio  software, which currently uses a form of kernel regression called the Expert State 

 

as 

Ex  
Laborat r 
power plant
Expert Micr
Estimation .  The software 
has a

1985, 1989, 1992] through a Departme
of artificial intelligence techniques to nuclear power 

inued with similar research from the late 1980s [Mott 1987], when they developed the Multivariate 
State Estimation System (MSET), which has gained wide interest by U.S. nuclear utilities.  SmartSignal
Corporation of Lisle, Illinois, licensed the MSET technology for applications in all industries and 
subsequently extended and modified the basic MSET technology in developing its commercial 
Equipment Condition Monitoring (SmartSignal eCM™ ) software [Wegerich 2001].  The Electric Power 
Research Institute (EPRI) has used a product from Expert Microsystems called SureSense [Bickford 
2003], which uses a similar kernel-based algorithm.  The major European participant in this area is the 
Halden Research Project, in which Dr. Paolo Fantoni and his multinational research team have dev
a system termed Plant Evaluation and Analysis by Neural Operators (PEANO) [Fantoni 1998, 1
uses auto-associative neural networks (AANN) and applies them to the monitoring of nuclear power plant
sensors.   

Currently four major service providers and systems have used empirical modeling for sensor 
calibration monitoring in nuclear power plants: 

1.  Expert Microsystems has developed a system termed SureSense® Diagnostic Monitoring 
®

Estimation Engine (ESEE). 
2.  SmartSignal Inc. has developed a product termed eCM™ using MSET for equipment 

condition monitoring. 
3.  The Halden Reactor Project (HRP) has developed a product termed Process Evaluation and

Analysis by Neural Operators (PEANO) using AANNs. 
4. Analysis and Measurement Services (AMS) Corporation has developed an averaging 

technique that is being used at Sizewell B in England for calibration extension.  AMS h
also recently been granted (2007) a DOE Phase II SBIR to develop and implement advanced 
and integrated techniques to monitor nuclear power plant instrumentation. 

pert Microsystems licensed an MSET-based monitoring system from Argonne National 
ory and teamed with EPRI to develop and test a sensor calibration monitoring system for nuclea

 implementation.  Recently (2004), intellectual property issues over MSET have prompted 
osystem to replace the MSET algorithm with another kernel technique termed Expert State 

Engine (ESEE) in their SureSense® Diagnostic Monitoring Studio® software
 general framework, and other model architectures can also be implemented.  The EPRI 

implementation program tested the SureSense® system on six nuclear power plants including Harris, 
Limerick, Salem, Sequoyah, TMI, and V.C. Summer.  
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SmartSignal also licensed the MSET technology from Argonne National Laboratory and 
some of the seminal patents.  They have implemented their system on all three Palo Verde Nuclear Un
for equipment condition monitoring.  The technology h

purchased 
its 

as detected equipment abnormalities such as an 
RCS

m was originally based on the AANN model [Fantoni 
2002 e and 

 

g 

Alth

To preface this section, it should be stated that at the time of this writing (2007), the NRC believes 
iciently predictable for use in key safety functions 
ause they have historically been investigated for use 

in O

lex, interconnected, nonlinear modeling 
ility to model any nonlinear relationship.  ANNs are built from individual 
ificial neurons.  Artificial neurons can be understood in terms of their 

biolo r 

 

Fig. 2-5.  Anatomy of biological neuron. 

 

 hot leg temperature sensor failure and a reactor coolant pump-seal failure [Coppock 2003].  At the 
time of this writing, Arizona Public Service has not decided whether the cost-benefit analysis warrants a 
license amendment for calibration extension.   

Researchers at the HRP in Norway have been leaders in the development of sensor calibration 
monitoring systems since their introduction of their system entitled Process Evaluation and Analysis by 
Neural Operators (PEANO) in 1995.  This syste

], but other models have also been implemented.  The system utilizes a client/server architectur
a modular modeling structure.  HRP researchers have applied the system to various plants around the 
world for equipment condition monitoring and sensor calibration monitoring.  An excellent and complete
history of PEANO’s 15 years of development and implementation is provided by Fantoni [Fantoni 2005].  

In the following sections, the fundamentals of the three commercially available empirical modelin
techniques for sensor calibration monitoring will be discussed, specifically auto-associative neural 
networks (AANN), auto-associative kernel regression (AAKR), and auto-associative MSET (AAMSET).  

ough these products may be available commercially, this NUREG/CR tries to address the modeling 
techniques used in the products, and not the products themselves.  The commercial product and the 
modeling technique are not the same thing and should not be confused.  In fact, due to advances in 
technology or intellectual property disputes, several providers have been known to change the modeling 
technique they employee in their products.  Thus, it is important to understand and separate the actual 
model used in the product, and not just associate each model with a single product.   

2.2 Auto-Associative Neural Networks 

ANNs to be inherently nondeterministic and not suff
such as sensor calibration monitoring.  However, bec

LM systems, they will be included in this report.  

2.2.1 Artificial neuron 

Artificial neural networks (ANN) are highly comp
techniques that have the flexib
computing elements, called art

gical counterparts.  It can be seen in Fig. 2-5, a neuron’s anatomy is composed of four majo
structures: the dendrites, the soma, the axon, and the synaptic terminals. 
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The body of the nerve cell is als from other neurons through 
aths called dendrites (receptive zones).  If the combined signal is strong enough it fires an output through 
 a

e processing unit 
sum its 

 

Fig. 2-6.  Anatomy of an artificial neuron. 

 

Recall that the processing u ks:  (1) it sums the weighted 
inputs and (2) modifies this result with an activation  These tasks may be used to create a more 
deta

 

Fig. 2-7.  Anatomy of the processing unit of an artificial neuron. 

 

Here, Si is one of  b is the neuron’s 
ias, I is called the neuron’s internal activation, and O is the neuron output.  Notice that the neuron output 

is a f  it 

 the soma.  It receives and combines sign
p
an xon (transmission line).  Synapses are areas of contact between neurons, they can be either excitatory 
or inhibitory; they regulate how much of each incoming signal passes to the neuron.  

The anatomy of an artificial neuron is presented in Fig. 2-6.  The inputs are signals that enter the 
neuron.  Weights modify the incoming signals acting as the connection’s synapse.  Th

s the modified inputs and modifies the result with an activation function.  Finally, the output transm
the signal either to another neuron or out of the network. 

 

nit of an artificial neuron performs two tas
function. 

iled schematic for the processing unit, as seen in Fig. 2-7.   

 

 the N neuron inputs and wi is its associated connection weight;
b

unction of its internal activation, I.  This function is known as the neuron’s activation function, and
may be either linear or nonlinear.  Common activation functions include thresholds, signum, linear 
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(neuron output is equal to its internal activation), logistic, and hyperbolic tangent [Tsoukalas and Uh
1997].   

rig 

2.2.2 Neural network architectures 

being a collection of many simple, but highly 
inter ay 

 

In  network, neurons are collected into a single layer, and all connections 
feed

d 

 

Fig. 2-8.  Examples of (a) single-layer feed-forward, (b) multilayer feed-forward, 

 

ork training 

ally trained in an iterative, batch manner.  This process is illustrated in 
Fig. 

ases to small random values and set iteration counter 

A neural network may be loosely described as 
connected artificial neurons.  Although this description is relatively simple, neural networks m

have infinitely complex architectures.  In general, there are three fundamental network architectures: 

1. single-layer feed-forward networks, 
2. multilayer feed-forward networks, and
3. recurrent networks 

a single-layer feed-forward
 forward through the network [see Fig. 2-8(a)].  In a multilayer feed-forward network, neurons are 

organized into multiple layers, and all connections feed forward through the network [see Fig. 2-8(b)].  
Finally, recurrent networks are networks that have feedback connections (i.e., a neuron’s input is affecte
by its previous output) and may exhibit temporal behavior [see Fig. 2-8(c)].  Each of these architectures 
has been prolifically adapted to solve many science and engineering problems.   

 

and (c) recurrent network architectures. 

2.2.3 Netw

Neural networks are gener
2-9 and is summarized by the following steps. 

1.  Initialize neural network weights and bi
to zero. 
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2.  Simulate network with training data. 
3.  Calculate the error of the network’s estimates with their target values. 
4.  Compare error with a user-specified target value. 
5.  If the network does not meet the target performance criteria and if the maximum number of 

iterations has not been exceeded go to (a); otherwise go to (b). 
(a)  Calculate updated weight and bias values, update the network, increment iteration 

counter, and go to step 2. 
(b)  Stop training. 

The different network training algorithms differ primarily in the way in which the weight and bias 
updates are determined.  These training algorithms are all optimization techniques, and several algorithms 
exist that optimize the weights and biases to minimize the training error.  Currently accepted methods for 
updating the neural network weight and bias values include gradient descent, conjugate gradient, one-step 
secant, Newton’s method, and Levenberg-Marquardt [Bello et al. 1992; Demuth et al. 2005; Hagan et al. 
1995; Snyman 2005].  Even though there are slight differences between the listed updating methods, the 
process is conceptually the same in that each combines a network’s current state with a perturbed state 
(i.e., perturbed toward a minimum error) to develop the updated network parameters.  The technique 
chosen is not important, only the resulting performance. 

 

 

Fig. 2-9.  Process diagram for general neural network training. 
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2.2.4 Historical development of the AANN 

According to its original designer, Kramer [1991, 1992] states that the AANN was primarily 
developed to allow for the replacement of the conventional, multistep process of data rectification, gross 
error detection, failure identification, and sensor value replacement estimation commonly used in the 
monitoring of chemical processes with a single forward pass through the AANN.  Prior to the 
development of the currently accepted AANN architecture, the concept of neural network autoassociation 
had been unsuccessfully investigated by Ackley et al. [1985], Rumelhart et al. [1986], Cottrell et al. 
[1987], and Chauvin [1989].  However, associative memory networks, which recall historical exemplars 
when supplied with new, similar patterns, were successfully developed by Hopfield [1982], Lippmann 
[1987], and Kosko [1988].  While the objectives of AANNs and associative memory networks are similar, 
AANNs “perform functional mappings while associative memory networks are classifiers, recalling a 
stored exemplar that most closely resembles a partial or corrupted input pattern” [Kramer 1992].  
Although associative memory networks do not technically perform the task of autoassociation, they 
represent a step in the right direction.  The breakthrough came when the “bottleneck” layer was 
introduced.   

The bottleneck layer is defined as being a constraining layer having the smallest dimension of any 
layer in the entire network.  Qualitatively, this layer acts as a nonlinear feature extraction or data 
compression agent, forcing data to be represented by fewer components than in its original state.  For 
linear systems, this approach is well known and documented as principal component analysis (PCA) 
[Fukunaga and Koontz 1970], which is based upon a linear mapping between p and A-dimensional spaces 
(p > A).   

PCA is a method for explaining the variance of the input variable matrix in terms of a number of new 
latent variables called principal components (PCs) [Hodouin 1993].  PCA defines the closest plane to a 
system of points in space such that the sum of squares of the perpendicular residuals onto that plane was 
the least [Hotelling 1933].  In the m-dimensional input variable space, the first loading vector a1 defines 
the direction of greatest variability, and the score vector z1 represents the projection of each observation 
vector (input variable pattern or sample) onto a1.  Alternatively, a1 and z1 are the first eigenvectors of XTX 
and XXT, respectively.  The second PC is that linear combination of the input variables explaining the 
next greatest amount of variability subject to the condition that it is orthogonal to the first PC, that is z2 = 
E1a2, where E1 = X – z1 a1

T is the residual matrix left after removing the predictions of the first PC.  This 
process can be repeated until p PCs are obtained.  Considering all of the PCs, the dimensionality of the 
input variables has not been reduced, but the axes of the input variable matrix have been rotated to a new 
orthogonal basis.  With large data sets of correlated variables, after defining A PCs, where A << p, most 
of the variation in the input variable matrix (X) can be explained by the first A PCs.  This leads to a 
dimensionality reduction from p to A.  The similarity of the AANN architecture to PCA eventually led to 
the development of a nonlinear PCA (NLPCA) algorithm by Dong and McAvoy [1994, 1996]. 

2.2.5 AANN architecture 

The general architecture of an AANN is presented in Fig. 2-10, along with the neuron symbol 
definitions in Fig. 2-11.  It can be seen that there are four major neuron layers, specifically mapping, 
bottleneck, de-mapping, and output layers.  
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Fig. 2-10.  AANN architecture. 

 

 

Fig. 2-11.  Artificial neuron symbol definitions. 

 
Generally, the p input variables are decomposed into nonlinear features by the nm neurons in the 

mapping layer.  These features are then combined and passed through the nb bottleneck neurons, which 
perform a nonlinear transformation on the decomposed features.  Next, the outputs of the bottleneck 
neurons are combined and reconstructed into nonlinear features by the nm neurons in the demapping layer.  
These reconstructions are then linearly combined to form predictions for the p input variables by the 
output layer. 
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This process is more clearly illustrated by considering an example (see Fig. 2-12).  Consider an 
AANN that has been developed to monitor four nonredundant sensors.  Additionally, suppose that there is 
only one useful nonlinear relationship between the four sensor outputs.  When query data for the four 
sensors are supplied to the AANN, they are first decomposed into nonlinear components by the mapping 
layer.  These components are then combined and passed through a nonlinear transformation by the 
bottleneck layer.  Since it was stated earlier that there is only one useful nonlinear relationship between 
the sensor outputs, it can be expected that one bottleneck neuron will result in a properly trained AANN.  
The additional nonlinear features, which may generally be attributed to random noise, are dropped from 
the parameter estimation process.  The outputs of the bottleneck neurons are then reconstructed into 
nonlinear components, which are eventually combined into predictions for the four sensor values. 

For additional information on AANNs and neural networks in general, the reader is referred to 
Haykin [1994]. 

 

 

Fig. 2-12.  Illustration of AANN signal propagation example. 

 

2.2.6 ANN regularization techniques 

As previously outlined in Sect. 2.3.1, inverse problems, such as those found in some OLM models, 
are often ill-posed.  To better solve these problems numerically one must introduce some additional 
information about the solution, such as an assumption on the smoothness or a bound on the norm of the 
weights.  This additional information will help prevent the model from being too complex for the system 
resulting solutions that have a lower variance and are more repeatable.  When the model is overly 
complex, “overfitting” will occur and the model will learn the noise in the data rather than the true 
underlying functional relationship.  In order to force the AANN complexity to match that of the system 
being modeled, three major regularization techniques are commonly employed [Gribok et al. 2002].  
These include cross-validation training, controlled neuron growth, and neuron pruning, each of which will 
now be discussed in more detail.  

2.2.6.1 Cross-validation training 

Cross-validation training is a technique commonly used in neural networks to prevent over-training.  
Overtraining, a familiar phenomenon that occurs during neural network training, results when the neural 
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network complexity is higher than that of the relationship being modeled.  As training progresses, an error 
criterion is iteratively minimized based on the training data; thus, the training error consistently decreases.  
Due to the presence of noise in the measured signals, if a similar but independent set of data (the 
validation data) is evaluated by the neural network after each iteration of training, the initial trend for the 
validation error will be to decrease; however, at some point, the validation error will begin to increase due 
to the training process learning the random noise in the training data that is different from that in the 
validation data.  This phenomenon is referred to as overtraining.  The process of cross-validation avoids 
overtraining by stopping the training process at the point where the validation error reaches a minimum 
and begins to increase.  The model performance is quantified from an additional data set never used for 
training or validation, so optimal application of the cross-validation training need not be a concern.  In 
other words, cross-validation training provides a method for restricting a neural network’s capacity to fit 
noise even if there is a miss-specification between the complexity of the relationship and the neural 
network architecture complexity.  

2.2.6.2 Controlled neuron growth and neuron pruning 

The next two regularization techniques are very similar and require changing the number of neurons 
in a neural network to match the model’s complexity to the complexity of the relationships in the data to 
be modeled.  The techniques do this by either sequentially adding neurons until the network successfully 
trains and/or sequentially removing neurons from a previously trained network until it no longer 
successfully trains.  Even though there is no universal process for determining the optimum number of 
neurons for a neural network, there are several “rules-of-thumb,” especially for AANNs.  The most 
significant of these is the observation that although changing the number of neurons in the 
mapping/demapping layer will affect AANN predictive performance, these effects are less significant 
than changes in the bottleneck layer.  Therefore, as a general rule, it is usually more important to have a 
network with sufficient mapping/demapping neurons such that a minimal number of bottleneck neurons 
may be used, than it is to have increased bottleneck neurons for a reduced number of mapping/demapping 
neurons.  In other words, the neurons in the bottleneck layer drive network complexity. 

2.3 Auto-Associative Kernel Regression 

2.3.1 Introduction 

In statistics and empirical modeling, the process of estimating a parameter’s value by calculating a 
weighted average of historical exemplar values is known as kernel regression [Atkeson 1997].  In general, 
kernel regression may be most compactly represented by the so-called Nardaraya [1964]-Watson [1964] 
estimator.  Consider the simplest inferential model (i.e., one input x, one output y) whose Nardaraya-
Watson estimator is given by the following equation: 
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where 
Xi and Yi  are exemplar predictor and response values respectively; 
 x is a query predictor vector, 

( −h iK X x )  is a weighting function or kernel function, which generates a weight 
similarity) for a given difference of a query and exemplar vector,  

ˆ ( )y x  is an estimate of y, given x. 
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The nonparametric model operates by comparing a query x to past input examples Xi.  The output is 
a weighted average of past examples Yi .  For example, if a query input is similar to stored inputs Xi = 6,8,13 
, then the output is a weighted average of output examples Yi = 6,8,13.  An alternative representation of 
Eq. (2.3.1.1) replaces the difference  with a general distance function,  as follows: 1 −X x ( , )i id X x
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2.3.2 Distance functions 

A common distance function is the Euclidean distance, which is also known as the L2-norm and is 
given by the following equation: 

 

 ( ) ( )2, = =i i id X x X x .  (2.3.2.1) 
 

More robust distance functions (i.e., erroneous data are less effective in degrading a parameter 
estimate) have also been investigated and include the L1-norm [Hines and Garvey 2005]: 

 

 ( ), = −i i id X x X x .  (2.3.2.2) 
 

In the one dimensional case these are equivalent but will not be when there are multiple model 
inputs.   

2.3.3 Kernel functions 

Recall that the role of the kernel function is to generate a weight (similarity) for a given distance of a 
query vector from an exemplar vector.  Therefore, it should have large values for small distances and 
small values for large distances.  In other words, when a query vector is nearly identical to an exemplar, 
its distance should be small; therefore, that particular exemplar should receive a large weight.  If a query 
vector did not resemble an exemplar, it should receive a small weight.  One commonly used function that 
satisfies this criterion is the Gaussian kernel [Fan and Gijbels 1996]: 
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Here, h is commonly referred to as the kernel’s bandwidth and is used to control what effective 

distances are deemed similar.  It can be seen in Fig. 2-13 that the Gaussian kernel with the smaller 
bandwidth (h = 0.1) will only generate large weights when the distance is very close to zero, while the 
kernel with the larger bandwidth is less specific and will assign significant weights for a larger range of 
distances.   
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Fig. 2-13.  Example of Gaussian kernels. 

 
Other kernel functions include the inverse distance, exponential, absolute exponential, uniform 

weighting, triangular, biquadratic, and tricube kernels [Atkeson 1997], examples of which may be seen in 
Fig. 2-14.  Although each function may have advantages in certain situations, the Gaussian kernel 
function is generally an adequate selection.  In fact, the work of Scott [1992] and Cleveland and Loader 
[1994a, 1994b] show that the kernel function type plays a noncritical role in the performance of locally 
weighted models. 

 

 

Fig. 2-14.  Examples of alternative kernel functions. 
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2.3.4 Extending traditional kernel regression to autoassociation 

In this section, a description of auto-associative kernel regression (AAKR) will be given.  Because 
descriptions of AAKR do not yet appear in open literature, this derivation is based upon multivariate 
inferential kernel regression as derived by Wand and Jones [1995]. 

In this report, the exemplar or memory vectors used to develop the empirical model are represented 
by the matrix X, where Xi, j is the ith observation of the jth variable.  For nm memory vectors and p 
process variables, this matrix becomes: 
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Using this format, a query vector is represented by the 1 × p matrix x: 

 
 1 2 .⎡ ⎤= ⎣ ⎦x L px x x  (2.3.4.2) 

 
The mathematical framework of this modeling technique is composed of three basic steps.  First, the 

distance between a query vector and each of the memory vectors is computed.  There are many different 
distance functions that may be used, but the most commonly used function is the Euclidean distance, for 
which the equation for the ith memory vector is as follows: 

 

 ( ) ( ) ( ) ( )22 2
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 (2.3.4.3) 

 
For a single query vector, this calculation is repeated for each of the nm memory vectors, resulting in 

an nm × 1 matrix of distances d: 
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Next, these distances are used to determine weights by evaluating the Gaussian kernel, expressed by: 
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where 

 h is the kernel bandwidth; and 

 26



 

  are the nm memory vector weights. 
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Finally, these weights are combined with the memory vectors to make predictions using the weighted 
average: 
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If the scalar a is defined as the sum of the weights, that is, 

 

  (2.3.4.7) 
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then Eq. (2.3.4.6 ) can be represented by the following more compact matrix form: 

 

 ˆ .=
Tw Xx
a

 (2.3.4.8) 

 

2.3.5 Regularization techniques 

Regularization incorporates an a priori assumption that a model’s input-output relationship should be 
smooth.  Recall that the AAKR weights are generated by a kernel function, whose character may be 
changed by either increasing or decreasing its bandwidth.  The question now arises, how does the 
character of the kernel function affect the smoothness of a model’s input-output relationship?  The answer 
to this question is easiest to understand by considering two extreme cases described earlier (see 
Fig. 2-13). 

2.3.5.1 Kernel bandwidth and smoothness 

First, consider a kernel function with a small bandwidth.  Such a kernel function would only generate 
significant weights when the query vector is very near a memory vector.  Therefore, it can be expected 
that for an arbitrary query vector, a very small number of memory vectors will influence its estimated 
value.  In general, this represents a poor utilization of information because a model’s generalization 
capabilities (i.e., production of valid estimates for parameters that lie between training states) are 
inherently a function of how much information is used to estimate its value.  AAKR models that use small 
kernel bandwidths can be expected to produce rough input-output relationships as the weights will 
generally oscillate between individual memory vectors. 

Next, consider a kernel function with a large bandwidth.  Such a kernel function would generate 
many significant weights, because it assigns significant weights to a larger range of distance values.  
Following a similar argument used earlier, for an arbitrary query vector a relatively large number of 
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memory vectors will influence its estimated value.  Such a kernel function would then act to smooth the 
AAKR’s input-output relationship, because more memory vectors are used in the weighted average.   

A comparison of an example AAKR model’s predictions for small and large bandwidths is presented 
in Fig. 2-15.  Notice that the predictions of the AAKR with the smaller bandwidth are significantly 
rougher than those of the larger bandwidth. 

 

 

Fig. 2-15.  Illustration of the relationship between AARK bandwith 
and the smoothness of parameter estimates. 

 
From these cases, a general relationship between kernel bandwidth and “smoothness” is found to be 

as follows: 

– Small bandwidths generally produce rough predictions. 
– Large bandwidths generally produce smooth predictions. 

At first glance it is tempting to jump to the conclusion that since regularization produces a smooth 
input-output relationship, then a large bandwidth should always be used.  This conclusion, however, is 
incorrect in that as the bandwidth increases, the model predictions will approach the mean value of the 
memory vectors, thus biasing the solution.  For example, if an AAKR model was trained to generate a 
sine wave, the model’s estimates will approach zero, regardless of the character of the query vector, for 
increasingly large bandwidths.  Such a model would have no practical value, and therefore a methodology 
is needed for locating the bandwidth which provides the best trade-off between rough and smooth 
parameter estimates.  Generally, bandwidth optimization proceeds as follows: 

1. Define n test bandwidth values and set the iteration index i to 1.  

2. Construct a prototype model with the ith kernel bandwidth. 

3. Score the model’s performance according to an objective function. 

4. If i ≠ n, go to (a), otherwise go to (b). 

(a)  Store model score in a history variable or file, increment i, and return to step 2. 

(b)  Identify the minimum objective function score from the optimization history and label its 
corresponding bandwidth as having the optimal value. 
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Notice in step 4(b) that the optimum bandwidth is that which minimizes an objective function.  A 
minimum value is used instead of the maximum in this generic description because the objective function 
is usually an error measure.  In the following sections, two scoring methods that are used in bandwidth 
optimization are discussed.   

2.3.5.2 Cross-validation error minimization 

The first scoring method is cross-validation error minimization.  In this method, memory vectors and 
a kernel bandwidth are selected to create a prototype model.  Next, the prototype model is used to 
estimate the values of nv test observations that contain feature patterns not present in the training data.  
Finally, the test data are subtracted from the prototype model estimates and used to calculate the mean 
squared error (score).   

For an auto-associative model, calculating the mean squared error (MSE) involves calculating the 
MSE for each modeled variable and then calculating the mean of these values.  Here e is defined as a 
1 × p matrix of mean squared errors for the p variables, where ej is the MSE for variable j,  
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where, xk, j refers to the kth test observation of variable j.  The score for the ith prototype model is found 
by calculating the mean value of e, as follows. 

 

 
1

1 .
=

= ∑
p

i j
j

S e
p

 (2.3.5.2) 

 
Because the patterns that are present in the test data have not been used to define the model, the 

model which minimizes Si is the model that can be expected to produce the best estimates for future, 
unseen patterns. 

2.3.5.3 Cross-validation uncertainty minimization 

The second scoring method is called cross-validation uncertainty minimization and is equivalent to 
cross-validation error minimization with the exception that an estimate of the model’s uncertainty is used 
to calculate a score instead of its prediction error.  For a complete discussion of methods for estimating 
uncertainty, see Chaps. 5 and 6 of this report.  For the time being, it is assumed that methods exist for 
estimating a model’s uncertainty and that u is a 1 × p matrix of mean uncertainties for each model 
variable.  The score for the ith prototype model is the mean value of u is 
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2.4 Auto-Associative Multivariate State Estimation Technique 

2.4.1 Introduction 

The Multivariate State Estimation Technique (MSET) is a nonlinear, nonparametric modeling 
technique that was developed by Argonne National Laboratory (ANL) [Gross et al. 1998, 2001; Singer 
et al. 2001] for high-sensitivity proactive fault monitoring applications in advanced nuclear power 
systems.  In addition to nuclear power plants, MSET has been used in a wide variety of monitoring 
systems that include (1) NASA’s realtime signal validation, sensor operability validation, and proactive 
fault monitoring for the space shuttle vehicle and ground support systems [Bickford et al. 2000, 2001]; 
and (2) Sun Microsystems’ proactive maintenance software for enterprise class computing hardware 
[Gross et al. 2002a, 2002b, 2002c].  MSET is very similar to AAKR and only differs by the normalization 
method.  The innovative derivation of MSET is given by Singer et al. [2001], which is outlined below. 

If nm exemplar vectors of p sensor values are collected from a system, then the process memory D, 
commonly referred to as the memory matrix, may be represented as follows. 
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The memory matrix D may now be used to estimate the values for a query observation of the p 

system variables, denoted by the 1 × p vector x.  An estimate of x may be calculated with: 

 

  (2.4.1.2) ( ) 1
ˆ .

−
=T T Tx D D D D xT

 
This linear solution minimizes the Euclidean norm between the estimated and measured data vectors. 

This result has several clear limitations, specifically the requirement that TD D  be nonsingular, an 
inability to accommodate random uncertainties, and nonrandom defects.  MSET addresses these 
limitations by introducing a nonlinear operator, denoted by ⊗, into Eq. (2.4.1.2): 

  (2.4.1.3) ( ) (1
ˆ .

−
= ⊗ ⊗T T T Tx D D D D x )

D

 
Singer et al. [2001] describe a suitable nonlinear operator as having the following properties: 

1.  must be nonsingular; ⊗TD

2. if some elements in the observation vector are not within the ranges of the same elements of 
the column vectors in the memory matrix D, the estimation vector must still represent an 
optimum estimation; 

3. if the observation vector is identical to one of the column vectors in D, then the estimation 
vector must be identical to the observation vector; and 

4  the error vector (difference between the observation and estimation vectors) must be 
minimized. 

 30



 

Two such operators that fulfill these conditions have been identified but are not available in the 
literature due to patent and proprietary issues.  In the next section, Eq. (2.4.1.3) will be manipulated, such 
that its final form will be very near that of kernel regression.  Furthermore, it will be shown that the 
MSET nonlinear operator is a type of kernel function and therefore, should not provide critical 
improvements [Scott 1992; Cleveland and Loader 1994a, 1994b] to parameter estimates as compared to 
the widely used Gaussian kernel [Wolpert 1997].  Researchers at the University of Tennessee have 
already investigated the operators used in the commercially available MSET and determined that they 
perform similarly to the Gaussian kernel.  Additional testing has been performed that supports the 
findings that no one operator is better than all other operators in a general OLM system.  It is expected 
that a TS license amendment would disclose the kernel type and would also need to demonstrate its 
proficiency in this algorithm. 

2.4.2 MSET vs kernel regression 

Recall that the estimation equation of AAKR for an input vector x is 

 

 ˆ .=
Tw Xx
a

 (2.4.2.1) 

 
Also, recall that w is an nm × 1 matrix of weights obtained by evaluating the Gaussian kernel with the 

distances of x from each of the nm exemplar vectors contained in X, and a is a normalizing constant (sum 
of the weights).   

2.4.2.1 MSET function manipulation 

To begin the comparison, recall that the memory matrix D is the transpose of X.  Making this 
substitution yields: 
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Canceling the appropriate transpose operations: 
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Next, taking the transpose of both sides: 
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Notice, that there is a significant change in operation (i.e., ⊗ and multiplication) order.  This change 

is a result of the following matrix property: 

 
  (2.4.2.6) ( ) .=T T TAB B A
 

Also, notice that  remained unchanged from Eq. (2.4.2.4) to Eq. (2.4.2.5).  This is a 

result of the following properties: 
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The properly represented by Eq. (2.4.2.8) implies that ⊗ TX X  is a symmetric matrix (i.e., ).  

This properly will be illustrated in the next section, which describes how the nonlinear operator ⊗ is 
applied. 

=TA A

2.4.2.2 Applying the nonlinear operator 

To further condense Eq. (2.4.2.5), the process of applying the nonlinear operator ⊗ must be 
understood. First, consider, , which is fully represented by the following matrices: ⊗ Tx X
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As with matrix multiplication, the application of ⊗ produces a 1 × nm matrix, as verified by the 

following equation: 

 
  (2.4.2.10) ( )( )1 1× × = ×mp p n n .m

 
The process by which this calculation is performed proceeds according to the following steps (see 

Fig. 2-16): 

1. Set i = 1. 
2. Extract the ith column from XT, which is the ith memory vector Xi. 
3. Calculate the distance of x from Xi. 
4. Supply the distance to the MSET kernel and record its output in the ith column of weight 

matrix w. 
5. If i ≠ nm, go to (a), otherwise go to (b). 

(a)  Increment i and return to step 2. 
(b)  Stop. 
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Fig. 2-16.  Process diagram for applying the MSET nonlinear operator for a x and X. 

 
Notice that when the Gaussian kernel function is used, that w is identical to the w used in kernel 

regression.   

Next, consider ⊗ TX X , which is calculated according to the following steps: 

1.  Set i = 1 and j = 1. 

2.  Extract the ith row from X, which is the ith memory vector Xi. 

3.  Extract the jth column from XT, which is the jth memory vector Xj. 

4.  Calculate the distance of Xi from Xj. 

5.  Supply the distance to the MSET kernel, and record its output in the ith row and jth column 
of a normalizing matrix N. 

6.  Evaluate the appropriate iteration case. 
(a)  If i ≠ nm and j ≠ nm, then set j = j + 1 and return to step 3. 
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(b)  If i ≠ nm and j = nm, then set i = i + 1, j = 1, and return to step 2. 
(c)  If i = nm and j = nm, then stop. 

Examining the above process, three major features of the normalizing matrix N are evident.  First, 
the dimensions of N are nm × nm.  Next, the diagonal elements of N are simply the kernel function’s 
maximum value, since 

 

 ( ), , 0= ⎡ = ⎤ .⎣ ⎦i i h i iN K d X X  (2.4.2.11) 
 

Finally, since distance functions do not generally depend on order, that is:  
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then the elements of N are symmetric. 

 
 , , .=i j j iN N  (2.4.2.13) 
 

This feature verifies the symmetry property presented earlier in Eq. (2.4.2.8). 

2.4.2.3 MSET normalization and effective kernel 

The MSET prediction equation is now given by: 

 
  (2.4.2.14) -1ˆ .= Tx w N X
 

Rearranging Eq. (2.4.2.14), an equation very similar to kernel regression is finally obtained: 

 

 ˆ  =
Tw Xx
N

.  (2.4.2.15) 

 
It can be seen that the normalizing matrix N performs a similar task of normalizing a model’s 

estimates as a in kernel regression.  The difference lies in the fact that N−1 acts to change the Gaussian 
kernel into a higher order kernel.  An example of this transformation is illustrated in Fig. 2-17, which is a 
plot of ordered MSET weights for a query vector located near the middle of a memory vector range.  In 
summary, MSET is equivalent to AAKR with a higher-order kernel that provides additional flexibility 
and complexity.  It is not apparent that this higher complexity provides any advantages for OLM tasks. 
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Fig. 2-17.  Illustration of effective MSET kernel. 

 

2.4.3 Regularization techniques 

Because auto-associative MSET (AAMSET) is very similar to AAKR, the regularization methods 
discussed in Sect. 2.3.5 are applicable to AAMSET.  There are, however, two additional regularization 
techniques that may be used with AAMSET. 

2.4.3.1 Vector selection 

Recall that AAMSET requires the inversion of a normalizing matrix N, which is defined as: 

 
  (2.4.3.1)  = ⊗ TN X X .
 

Predictions are made by comparing a query observation with historical observations called memory 
vectors.  Because a query vector must be compared to each memory vector, large training data sets can 
easily lead to unacceptable computational loads.  Although counterintuitive, smaller training sets may be 
needed because the solution to most OLM models use the inversion of the D'⊗D matrix, which is ill-
posed and unstable when memory vectors are similar.  This is similar to ill-conditioned X'X matrices in 
linear regression that occur when the inputs are correlated (somewhat dependent).  Consider the fact that if 
the number of training observations is large compared to the number of operating states of the system 
being modeled, then the number of similar rows in X would be large.  Because the nonlinear operator ⊗, 
as used in Eq. (2.4.3.1), effectively measures the similarity between the rows of X, N will be poorly 
conditioned, which results from the repeating of patterns (similarities) in N.  The end result of this 
situation is that the AAMSET model will be unstable and produce unreliable parameter estimates.   

One solution to this conditioning problem is to intelligently select a reduced set of memory vectors 
from the training data and then use the selected vectors to develop the AAMSET model.  One such vector 
selection algorithm is described by Gross et al. [2002a] and involves the following two steps:  (1) the 
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observations containing the minimum and maximum value for each included signal are selected, and 
(2) additional vectors are selected by first ordering the training data observations according to their 
Euclidean norm and then selecting observations at equal intervals to fill the AAMSET model with a user-
specified number of operating examples.  A typical number of memory vectors for MSET is on the order 
of 50 while AAKR may use 500.  Memory vector selection techniques are discussed in more detail in 
Volume 3 of this series. 

2.4.3.2 Ridge regularization 

Another method of AAMSET regularization involves implementing a form of ridge regularization to 
 [Hines and Usynin 2005].  In a similar manner as ridge regression [Hoerl and Kennard 1970], a 

regularization parameter λ is applied by: 
⊗ TX X

 
 .⊗ + λTX X I  (2.4.3.2) 
 

Here, I is an identity matrix having the same dimension as .  It has been shown by Hoerl 
and Kennard [1970] that a decrease in the condition number (ratio of the maximum and minimum Eigen 
value) of a matrix greatly improves the prediction stability of a model developed from its inversion.  In 
Eq. (2.4.4.2), λ dampens the effects of the smaller Eigen values, which increases the effective minimum 
Eigen value and improves the condition of the matrix to be inverted.  This produces more stable and 
repeatable predictions. 

⊗ TX X

2.5 Performance Measures  

The performance of auto-associative OLM systems is measured in terms of three metrics: accuracy, 
auto-sensitivity, and cross-sensitivity.  Accuracy measures the ability of a model to correctly and 
accurately predict sensor values and is normally presented as the MSE between the predictions and the 
measured sensor values.  Auto-sensitivity measures a model’s ability to make correct sensor predictions 
when the respective sensor value is incorrect due to some sort of fault.  Finally, cross-sensitivity measures 
the effect a faulty sensor input has on the predictions for other sensor predictions of the model.  For 
additional information refer to the work of Hines and Usynin [2004].  Two newer metrics are also 
discussed in this section: Error Uncertainty Limit Monitoring (EULM) detectability, and Sequential 
Probability Ration Test (SPRT) detectability, which have been recently introduced for quick validation of 
OLM applicability for sensor calibration monitoring [Hines and Garvey 2006].  EULM and SPRT 
detectability quantify the smallest sensor calibration fault and anomaly that may be identified by an 
empirical model, respectively.  Because an ideal model would be accurate, would have sensor predictions 
that are not appreciably affected by degraded inputs, and would be able to detect small sensor faults and 
anomalies, all of these metrics become extremely important to OLM models.  

Before discussing these metrics in more detail, a summary of the general testing process used in 
these performance calculations is given.  To begin, a model’s response using unfaulted input data is 
calculated and used to determine the accuracy metric.  These data are commonly termed “test data” or 
“validation data” and should be data not used for model training or optimization.  Next, each of the input 
variables is sequentially artificially drifted and applied to the models.  The predictions using faulty input 
data are then used to determine the model’s auto and cross-sensitivity.  Each of the three metrics is now 
discussed in more detail, starting with the accuracy metric. 

2.5.1 Accuracy 

The accuracy metric is simply defined as the MSE between the model’s predictions and the target 
values.  It is important to note that this metric compares the model predictions with the sensor 
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measurements (inputs) for data that were not used for model training or optimization.  The equation for a 
single variable is simply: 
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 (2.5.1.1) 

 
where 
 

N is the number of test observations, 

ˆ ix   is the model prediction of the i th test observation, 

xi  is the i th observation of the test data. 
 

Although this metric is termed accuracy, it is actually a measure of error, and a low value is desired.  
The accuracy metric is the most commonly cited metric because it represents a model’s performance for 
unfaulted input data.  However, since the purpose of empirical modeling in OLM systems is to identify 
sensor and process faults, model performance under faulted conditions is important and must be 
quantified. 

2.5.2 Sensitivity 
As described by Gribok et al. [2002], the original concept of robustness can be traced to inferential 

regression models.  In this context, a robust model is defined as a model that produces little to no changes 
in its output for small errors in its inputs.  Extending this idea to auto-associative empirical models, a 
robust model would produce little to no changes in all of its outputs for errors in each of its inputs.  This 
concept was first used to quantify OLM modeling performance by Uhrig et al. [1996] and Wrest et al. 
[1996] in which sensitivity measures were defined.  Similarly, Wegerich [2002] developed equations for 
performance termed robustness and spillover, for which we define as auto-sensitivity and cross-
sensitively, respectively. 

On-line modeling uses empirical models to predict the true values of process parameters that are 
measured by sensors and their associated instrumentation.  The predictions are compared to the measured 
values, and the differences are called residuals.  Under normal conditions, the residuals are attributed to 
noise and are small random values that vary around zero.  When residuals start to grow, an abnormal 
event is occurring.  A model prediction needs to give the correct value even when sensor measurements 
that are supplied to the model contain errors.  If a model prediction drifted along with a drifting sensor, 
the difference would be zero and the fault would be masked.  Therefore, a model that is insensitive to 
input faults is desired. 

To calculate the sensitivity of a prediction, first a model’s response using fault-free input data is 
calculated.  It is important that a data set which covers the entire operating region be chosen because the 
sensitivity could be different at different points.  Next, each input variable is sequentially artificially 
faulted, and the model outputs are recorded.  These predictions using faulty input data are then used to 
determine the model’s sensitivity metrics.   

Model sensitivity is generally defined as a measure of the change in the prediction of the ith variable 
( ) produced by a change in its respective input (xi): ˆ ix
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Auto-sensitivity (SA) is a measure of an empirical model’s ability to make correct sensor predictions 
when it’s respective input sensor value is incorrect due to some sort of fault.  Therefore, this metric 
involves the following values: sensor i’s prediction with no fault in the input , sensor i’s prediction 

with a faulted input 

ˆ ix

ˆ drift
ix , sensor i’s unfaulted input value xi, and sensor i’s drifted input value drift

ix . A 

histogram of the measurements should then be used to determine the variation between the individual 
sensitivity estimates.  If there is little or no variation, then a direct average over the operating region 
defined by N samples can be computed.  Using these definitions, the auto-sensitivity for sensor i is found 
with the following equation: 
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 (2.5.2.2) 

 
However, if the histogram shows that the average is not suitable, then only the worst 5% or 10% of 

the measurements should be included in the average to give a conservative “worst-case scenario” estimate 
of the auto-sensitivity.   

If a model’s auto-sensitivity is one, then the model’s prediction follows the fault, resulting in a 
residual of zero, and the fault cannot be detected.  If a model’s auto-sensitivity value is between zero and 
one, which is the common case, the residual will underestimate the size of the sensor fault, and the OLM 
system drift limits may need to be compensated accordingly. 

The next performance metric is cross-sensitivity.  This value measures the effect a faulty sensor 
input (i) has on the predictions of sensor (j).  This is illustrated by the following equation, in which j is the 
index of the unfaulted variable whose spillover metric is being calculated: 

 

 ,
1

ˆ ˆ1 for .
=

−
=

−∑
driftN
kj kj

C ij drift
k kj kj

x x
≠S i j

N x x
 (2.5.2.3) 

 
Like the auto-sensitivity metric, a histogram of the individual measurements should be used with the 

cross-sensitivity metric to show that the average is suitable.  If the average is not acceptable, then only the 
worst 5% or 10% of the values should be included in the calculation of the cross-sensitivity. 

To more clearly illustrate the concept of sensitivity, consider the plots presented in Fig. 2-18.  Two 
plots are included to illustrate the differences between an empirical model with small (upper plot) and 
large (lower plot) sensitivity metrics.  In both plots, the points indicate normal, undrifted sensor data; the 
line drifting to the bottom at the highest rate indicates artificially drifted sensor value that is supplied as 
an input to the empirical model, and the upper line represents the model predictions of the correct sensor 
values.  Notice that the model predictions with a small sensitivity (upper plot) lie very near the normal, 
undrifted data.  This indicates that the model is not significantly affected by the drifted input and is able to 
accurately predict the parameter’s actual value when supplied with faulty input.  This model is considered 
to be a “robust” model.  Next, consider the plot for the model with a large sensitivity metric (lower plot).  
Notice that the model’s predictions lie very near the artificially drifted values.  Such a model would be of 
little use in instrument calibration validation because its predictions follow the faulted inputs rather than 
correcting them.  The model would need to be reoptimized or retrained, or an entirely new modeling 
technique would need to be employed before implementing the model into an OLM system.   
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Fig. 2-18.  Illustration of sensitivity performance metric. 

 
Notice that the accuracy metric is calculated for each variable, the auto-sensitivity metric is 

calculated for the artificially drifted variable, and the cross-sensitivity metric is calculated for each 
variable except the artificially drifted variable.  Consider a model with five variables.  If a single variable 
is drifted, then there are five accuracy, one auto-sensitivity, and four nonzero cross-sensitivity metric 
values.  To quantify the sensitivity values for each variable, an algorithm is structured so that each 
variable is sequentially perturbed.  The auto-sensitivity metric for each variable is calculated, and the 
mean or 95% confident spillover metric for each variable is calculated. 

2.6 Fault Detectability 

All empirical predictive models used for OLM have uncertainty associated with their predictions.  
This uncertainty is caused by a multitude of factors including sensor noise, training data selection, model 
specification, model development, regularization [Gribok et al. 2002] and others.  The uncertainty 
inherent in the model predictions affects the size of the fault that can be confidently detected.  If a model 
prediction has 2% uncertainty defined by some sort of 95% confidence interval, then sensor drifts of 1% 
cannot be successfully identified.  Therefore, it is important to develop models with minimal uncertainty, 
to quantify the uncertainty [Hines and Rasmussen 2005], and to properly consider the predictive 
uncertainty when making decisions. 

Consider Fig. 2-19 that is a plot of a residual (the difference between an OLM model’s estimate and 
the actual measured value) with its 95% confidence interval as a dotted line.  The drift detection limits are 
set relative to the instrument channel uncertainties used in the set point analysis and the single-point 
monitoring uncertainty introduced by OLM [EPRI 2004].  The drift detection limits—presented as “Drift 
Limits” in the figure—must not be confused with the “Deviation Limit” as used in extensive discussions 
with industry in regard to Set Point-Related Technical Specifications.  The drift limits used here refer the 
conservative limits that are used to identify the onset of a drift problem.  If the residual reaches the limit, 
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then the instrument must be investigated.  The drift limits used here must include factors other than drift, 
such as the effects of variations in the normal operating environment.  But consideration is limited here to 
the sensors and those instruments involved in bringing the signals to the OLM computer, whereas the 
deviation limits are applied only to the instruments involved in periodic testing, which usually excludes 
the sensor.  The analysis requires a 95% confidence that the sensor value has not exceeded its drift limits.  
When the 95% confidence interval (CI) crosses the drift limit, the channel would be flagged as needing 
investigation, and depending on the plant’s procedures and the extent the CI exceeds the drift limits, the 
channel may be declared inoperable until the situation is resolved.  If the uncertainty interval is larger 
than the drift limit, OLM cannot be used to monitor the channel because there is no allowance for drift.  It 
can be seen that a small uncertainty interval allows a greater margin for drift before the channel is 
flagged.  A more restrictive drift threshold may be specified that would give earlier warning to sensor 
performance degradation. 

 

 

Threshold 
Violated + Drift Limit 

0 

95% Uncertainty Interval 

- Drift Limit 

Fig. 2-19.  On-line sensor calibration monitoring diagram. 

 
Two fault detectability performance metrics will be presented in the next two sections.  The first 

considers both the model auto-sensitivity and predictive uncertainty to quantify detectability for 
instrument calibration monitoring, while the second investigates a process to find the maximal sensitivity 
setting for a sequential probability ratio test (SPRT) used for anomaly detection.  Although only the first 
is applicable to safety critical calibration monitoring, both are presented because the SPRT has been used 
extensively for OLM. 

2.6.1 Error uncertainty limit monitoring (EULM) 

In addition to uncertainty, there are two more restrictions on the drift detection level.  First, when a 
sensor is calibrated it must be left with some predefined calibration tolerance.  The set point analysis is 
used to determine the trip set point that will protect the reactor during a severe accident.  This analysis 
considers assumed uncertainties inherent in the instrument channel.  A manual calibration check assures 
the sensor channel is operating within prespecified assumptions and leaves the channel within the 
calibration tolerance.  Drift is assumed to be time based, and a specified instrument drift rate is assumed 
between calibration intervals.  If OLM is performed quarterly, as potentially required by NRC, the drift 
limits must be made more conservative so that the channel will be operable a quarter later considering the 
assumed drift rate.  If the OLM is performed continuously, which may be approximated by daily checks, 
this additional allowance would not be required.  This additional conservatism will not be implemented in 
the following example, but is mentioned for completeness. 
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The second restriction that affects the drift detection level is the model auto-sensitivity.  Recall that 
the auto-sensitivity is a measure of how a sensor prediction responds to a drift of the respective sensor.  If 
the auto-sensitivity is unity, the prediction is not robust to the drift, it will follow the drift, and the 
residual will be equal to zero even when a drift is present.  Therefore, the extent to which an OLM system 
can detect a sensor fault is determined by two factors:  (1) its predictive uncertainty and (2) its auto-
sensitivity.  This dependency will now be used in an example to fully develop the EULM detectability 
performance metric. 

Suppose an empirical model of a sensor group has been developed, whose uncertainty of sensor i 
(95% CI) is found to be 1% of its nominal value.  In the ideal situation, the sensor’s prediction would be 
insensitive to input faults, and the smallest expected fault that the model could detect would be the 
magnitude of its uncertainty or 1%.  In other words, when the residual grew to >1%, one could be 95% 
certain that it was due to a drift and not due to the uncertainty of the prediction.  Because the ideal is 
rarely a reality, an empirical model’s predictions can be expected to drift slightly when an input is faulted.  
In the case when the auto-sensitivity is greater than zero, the sensor must drift by more than 1% for the 
residual to have a magnitude of 1%.  The equation for auto-sensitivity of the ith sensor is rewritten as the 
change in the prediction for a drifted input divided by the drift amount. 
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The residual is the difference between the input and the output with the input being the normal input 

plus the drift and the output being the normal output plus the portion of the drift (SA) that appears on the 
prediction: 

 
 ˆ ˆResidual = .= + Δ − − Δdrift drift

i i i i i ir x x x x  (2.6.1.2) 
 

If the model is accurate, the prediction equals the actual value ( ).  The contribution to the 

residual from the optimal prediction is usually due to noise and is often small compared to the 
propagation of the drift.  In other words, the error of the predictions is small compared to the error that 
results when there is a drift in the input and the above equation simplifies to 

ˆ =ix xi

 

 ˆ .= Δ − Δdrift drift
i i ir x x  (2.6.1.3) 

 
Using the equation for the auto-sensitivity, we have a measure of the residual in terms of sensitivity: 

 
  (2.6.1.4) ( ) (, 1= Δ − Δ = Δ −drift drift drift

i i A i i i A ir x S x x S ), .

 
The above equation says that the residual is only equal to a percentage of the actual drift.  For 

example, if the sensitivity is 0.2, then the sensor must drift by 1% =1.25%
1 0.2−

 for the residual to equal 

1%.  The EULM delectability equation can be written as  
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where 

iU  is sensor i’s model uncertainty (95% CI), 

Ei[x]  is sensor i’s expected or nominal value, 

SA,i  is sensor i’s auto-sensitivity. 
 

The detectability has units of percentage and is a function of both model uncertainty and model auto-
sensitivity.  It could alternatively be in units of percent span if Ei(x) were replaced by the span of the ith 
instrument.  If faults are being detected by examining the magnitude and uncertainty of the error, then the 
smallest detectable drift for a perfect predictor would be for an error of zero.  Therefore, the detectability 
would be the uncertainty.  Because there are sensitivity effects, the uncertainty must be augmented to get 
a more realistic estimate of the smallest detectable drift.  The auto-sensitivity is used because it is related 
to the drift in a specific sensor.  Typically it is also significantly larger than the cross-sensitivity metrics.  
In other words, when the detectability is corrected with the auto-sensitivity, it is corrected by a value 
greater than the cross-sensitivities.  A greater auto-sensitivity (SA,i) causes the denominator of the above 
equation to get smaller and the detectability (Di)  to get bigger; meaning that only larger drifts can be 
confidently detected.  An optimal model would have an auto-sensitivity equal to zero. 

2.6.2 Anomaly detection 

Whereas the EULM method was used to determine the smallest sensor drift that can be identified, 
the anomaly detection performance metric is used to determine the smallest process parameter change that 
can be detected, such as changes caused by degradation or faults.  Because we are not dealing with 
calibration verification, we will not directly evaluate the predictive uncertainty but will allow the 
algorithm to indirectly and iteratively determine it. 

The goal in anomaly detection is to be able to detect subtle changes in process sensor expected 
values beyond those normally expected.  The problem is how to determine whether the residual from a 
prediction is being caused by a faulted system or if it is due to normal process and instrumentation 
variations.  Stated in a more general way, is the sequence of residuals being generated by a random 
process with a mean of zero or from a process with a nonzero mean due to some fault condition?  

The Sequential Probability Ratio Test (SPRT) is a statistical technique developed by Wald [1947] 
that can be used to answer such a question.  The objective of anomaly detection is to detect a system 
anomaly or failure as soon as possible with a very small probability of making a wrong decision.  The 
SPRT procedure consists of testing whether a sensor is more likely to be in a normal mode H0 or in a 
degraded mode H1.  The SPRT is optimal in the sense that a minimum number of samples are required to 
detect a fault (change in mean) existing in the signal. 

The general procedure for the SPRT is to first calculate the likelihood ratio, which is given by the 
following equation where {xn} is a sequence of consecutive n observations of x. 
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The likelihood ratio is then compared to the lower (A) and upper (B) bound defined by the false 

alarm probability (α) and missed alarm probability (β) as follows. 
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If the likelihood ratio is less than A then it is determined to belong to the system’s normal mode H0.  

Conversely, if the likelihood ratio is greater than B it is determined to belong to the system’s degraded 
mode H1 and a fault is registered.  For this work, the SPRT is applied to the residuals between a sensor 
measurement and an empirical model’s predictions of the parameter.  The residuals are assumed to be 
normally distributed with a mean of 0 and variance of σ 2 , which is an estimate of the random variation of 
the sensor signal.  Therefore, the probability distribution function (pdf) for the normal mode of the 
residuals is given by: 
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From this description, two degradation modes are readily apparent and shown in Fig. 2-20.  In the 

first plot there is a mean shift up (+M), and the second plot shows a mean shift down (−M).  The random 
uncertainty is denoted by the spread of the Gaussian function.  The SPRT simply determines if the 
residual sequence is more probably generated from the normal or faulted distributions.  

 

 

Fig. 2-20.  Illustration of degraded modes for normal distribution. 

 
The derivation of the likelihood ratios is beyond the scope of this paper but can be found in Humenik 

and Gross [1990].  The natural logarithm of the likelihood ratios are compared to ln(A) and ln(B) in most 
implementations of the SPRT algorithm and are listed in Table 2-1. 

 43



 

Table 2-1.  Log likelihood ratio for a normal distribution 
with degraded mean 

Degradation mode Log likelihood ratio 

+M 
2 2
⎛ ⎞−⎜ ⎟σ ⎝ ⎠

M Mx  

–M 
2 2
⎛ ⎞− −⎜ ⎟σ ⎝ ⎠

M Mx  

 
The magnitude of the sensor change caused by an anomaly or fault that can be reliably detected by 

the SPRT is defined as the magnitude of M.  If the observed values consistently lie near either ±M the 
residual sequence is more likely to be generated from the +M distribution than from the normal 
distribution around 0. 

The optimal M value is determined numerically by applying the SPRT to unfaulted, test data and 
locating the M value that results in a false-alarm probability that is nearest the theoretical false alarm 
probability α.  If the optimal M value is estimated to be , then the anomaly detection performance 
metric in percent is given by the following equation: 

M̂
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 (2.6.2.4) 

 
Again, the detectability could alternatively be in units of percent span if E(x) were replaced by the 

instrument span.   

2.7 Simulated Data Examples 

This example presents an application of the three modeling techniques:  AAKR, AAMSET, and 
AANN to a simulated data set.  The model predictions and their performance measures will be calculated 
and compared.   

For this example, t is defined as a set of 1000 uniformly spaced real numbers on the interval of [−0.5, 
0.5].  The t value is used to define four true signals. 

 

  (2.7.1) ( ) ( )1 sin 10 .=f t t

  (2.7.2) ( )2 .=f t t

  (2.7.3) ( ) ( )3 sin 5 .=f t t

  (2.7.4) ( ) ( )sin 15
4 .= tf t e

 
Finally, normally distributed random noise with a mean of 0 and variance of 0.4, Ni (0, 0.4), is added 

to each variable’s true value to simulate process noise.   
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The simulated data were created by combining the variable’s true values with independent 
realizations of their respective noise distributions, Ni (0, 0.4), and may be seen in Fig. 2-21.   

The data set was randomly divided into training and test data sets.  The training data were used to 
develop the empirical models, while the test data were used to evaluate their performance metrics. 

 

 

Fig. 2-21.  Training and test data used to develop and compare model performance. 

 
The correlation coefficient matrix presented in Table 2-2 shows that the second and third inputs are 

highly correlated with each other, while inputs 1 and 4 have only slight correlations with the other inputs.  
Note that process models with small correlation, such as these, would probably not result in a usable 
model for calibration monitoring.  This simplified example was developed with functions that have no 
true dependencies and therefore have marginal performance.  If more cycles of the sine wave were 
included, the performance would be worse yet.  Higher correlated data would produce significantly better 
results. 

 
Table 2-2.  Correlation coefficient matrix 

 x1 x2 x3 x4 

x1 1 −0.232 0.099 0.241 

x2 −0.232 1 0.922 −0.071  

x3 0.099 0.921  1 −0.124  

x4 0.241 −0.071  −0.124   1  

 
For completeness the architectures of the three empirical models are as follows:  (1) AAKR—500 

memory vectors, bandwidth of 0.2, Euclidean distance function, and Gaussian kernel; (2) AAMSET—16 
memory vectors and bandwidth of 1.0; and (3) AANN—4 mapping/demapping neurons and two 
bottleneck neurons.  The predictions for x3 the test data of each model are presented in Fig, 2-22. 
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Fig. 2-22.  AAKR, AAMSET, and AANN predictions for x3. 

 
 

Each of the variables was artificially, linearly drifted by 2 standard deviations such that their 
robustness and mean or 95% confident spill-over performance metrics could be calculated.  The 
performance metrics for the three modeling techniques are displayed in Fig. 2-23 and listed in Table 2-3. 

 
 

 46



 

                                

 

Fig. 2-23.  Comparison of AAKR, AAMSET, and AANN performance metrics. 

 
 

Table 2-3.  AAKR, AAMSET, and AANN performance metrics 

  x1 x2 x3 x3 

Accuracy 0.0114 0.0027 0.0153 0.0113 

Auto-sensitivity 0.616 0.744 0.8398 0.6647 

A
A

K
R

 

Cross-sensitivity 0.199 0.0729 0.2017 0.221 

Accuracy 0.0717 0.0215 0.0409 0.1949 

Auto-sensitivity 0.4767 0.3851 0.5366 0.4408 

A
A

M
SE

T
 

Cross-sensitivity 0.2176 0.0903 0.2871 0.2213 

Accuracy 0.1311 0.0202 0.0585 0.0982 

Auto-sensitivity 0.6138 0.4692 0.529 0.5223 

A
A

N
N

 

Cross-sensitivity 0.2526 0.1277 0.4136 0.3957 
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It can be seen that the AAKR model has the smallest (best) accuracy metric, while the AAMSET and 
AANN models have the largest (worst) accuracy metric or worst accuracy performance.   

Next, notice that the AAMSET model has the smallest auto-sensitivity metric, while the AAKR 
model has the largest (worst) auto-sensitivity metric.  Again, the AANN performance is intermediate 
between AAKR and AAMSET.  Therefore, for this example, the AAMSET model is the most robust, but 
sacrifices its accuracy performance.  In other words, the predictions of the AAMSET model may be less 
accurate for good data, but less sensitive to changes in the inputs due to faults.  It has a better ability to 
filter out faulty or corrupted signals. 

Finally, notice that the cross-sensitivity performance of the models does not follow the pattern 
observed in the auto-sensitivity.  Here, the AAKR model is best suited for estimating the true values of 
the other variables for a fault in one of the other variables.  Also, notice that the AANN model has the 
worst cross-sensitivity performance, while the AAMSET model has an intermediate performance. 

There is a well-known theory called the “No Free Lunch” theory (no-free-lunch.org) [Wolpert 1995].  
It states that there is no model that is best suited for every data set.  Some models perform better on 
certain data sets than others.  Because of this, the performance on this one data set should not be taken to 
imply that a specific modeling technique is better than the others.  From this one example, no conclusion 
can be made as to the expected performance on another data set.  It is important to also realize that for a 
given model type the performance will also depend on model selection (e.g., bandwidth, training, and 
structure). 

These performance characteristics are also illustrated in Fig. 2-24.  For each model, two plots are 
displayed.  The top plot is of the model’s predictions of x2 for an artificial drift in x2.  The lower plot is of 
the model’s predictions of x3 for an artificial drift in x2, which shows how much a faulty sensor input has 
on the other sensor predictions.  The top plot illustrates the model’s auto-sensitivity (often referred to as) 
robustness performance, while the lower plot illustrates the model’s cross-sensitivity (also known as spill-
over) performance.  Notice that as the drift progresses; the predictions for x2 of the AAKR model diverge 
from its un-faulted values more than that of the AAMSET model.  This is an example of reduced 
robustness.  Additionally, notice that the predictions for x3 of the AAKR model are very near their 
modeled values, while the predictions of the AAMSET and AANN models diverge.  This is called 
spillover:  when a fault in one sensor spills over into another sensor’s prediction. 
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Fig. 2-24.  Comparison of AAKR, AAMSET, and AANN performance with a drift in the second variable (x2). 

 
Finally, Fig. 2-25 displays the AAKR model’s SPRT and EULM detectability metrics.  These 

metrics represent an estimate of the smallest fault that can be detected according to the EULM and SPRT 
fault detection algorithms.  In this example, the false alarm probability was set to 0.05 or 5%, and the 
missed alarm probability was set to 0.10 or 10% for the SPRT detectability. 

 49



 

 
(a) 

0.02

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0
1 2 3 4

 
(b) 

0.4

Fig. 2-25.  AAKR’s (a) SPRT fault detectability and (b) EULM fault detectability for the simulated dataset. 

 
We can see that the EULM fault detectability is almost an order of magnitude larger than the SPRT 

fault detectability.  This difference can be attributed to the fact that the EULM fault detection algorithm 
has been designed to identify sensor calibration faults taking into consideration predictive uncertainties, 
while the SPRT does not consider uncertainties and is better suited in enunciating small process/system 
anomalies that may not be safety critical. 
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2.8 Model Summary 

In this section the equations for the AAKR, AANN, and AAMSET models were derived.  Along 
with presenting the theory of the auto-associative models, their application to OLM was discussed.  In 
accordance with the “No Free Lunch Theorem” which explains why, over the set of all mathematically 
possible problems, each search algorithm will do on average as well as any other [Wolpert 1995], none of 
these models consistently outperform each other.  Rather, the technique’s performance depends on the 
specific input data being modeled.  Still, all of these models have been found suitable for OLM and are 
being marketed in commercially available software.  To compare the models, several metrics were 
presented to gauge the models’ performances.  However, one of the more, if not the most, important 
factors to determine a model’s proficiency for OLM is its predictive uncertainty.  The derivation of the 
fault detectability metrics showed the large role that a model’s predictive uncertainty plays in determining 
its detectability metrics.  If a model’s uncertainty is too great, it must be excluded from use in an OLM 
system.  Unfortunately, quantifying this uncertainty is an extremely complex task, and one of the more 
controversial issues surrounding OLM.  Thus, Chaps. 3, 4, and 5 all focus on model uncertainty, the 
methods to evaluate it, and how it is incorporated into OLM detectability limits.  
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3. EMPIRICAL PREDICTIVE UNCERTAINTY 

When empirical models are used to monitor safety-critical or high-value processes, model predictions 
should be accompanied by estimates of their uncertainty.  This fact is required and strongly stated in the 
NRC’s Safety Evaluation Report (SER) of OLM [NRC Project No. 669 2000].  Requirements 1, 3, 5, 6, 
and 7 of the SER pertain to the quantification of uncertainty associated with the plant parameter estimates.  
This section reviews each of these requirements and the remainder of the chapter presents methods for 
quantifying the uncertainty of empirical models used for OLM.  

Requirement 1: 
The submittal for implementation of the on-line monitoring technique must confirm that 
the impact of the deficiencies inherent in the on-line monitoring technique (inaccuracy in 
process parameter estimate single-point monitoring and untraceability of accuracy to 
standards) on plant safety be insignificant, and that all uncertainties associated with the 
process parameter estimate have been quantitatively bounded and accounted for either in 
the on-line monitoring acceptance criteria or in the applicable set point and uncertainty 
calculations. 

Most aspects of Requirement 1 have been studied by the EPRI OLM user group and related 
institutions.  The first volume of this NUREG/CR series discusses single-point monitoring in detail and 
cites the EPRI drift study [EPRI 2000].  Results from this study provided evidence that OLM was still 
valid even when the process is operating at a single point.  However, to encompass the added uncertainty 
when the plant is operating with very little process change, a single-point monitoring penalty must be 
included with the other uncertainty terms in the drift allowance calculation.  In the study, EPRI provides 
penalty values for many types and models of sensors.  Furthermore, OLM looks only to extend the 
calibration interval and not to eliminate calibrations altogether.  Because a minimum of one redundant 
sensor is calibrated at each fuel outage, traceability of accuracy to reference standards still exists.  The 
predictive uncertainty calculation methods discussed in this report ensure that the process parameter 
uncertainty is quantitatively bounded when certain assumptions are met. Volume 3 of this series 
demonstrates how the methods degrade when the assumptions are not met.  It is each individual plant’s 
responsibility to make sure this uncertainty is accounted for when setting the OLM drift limits.  Lastly, 
EPRI and others have only investigated the use of OLM in cases in which it will not affect set point 
calculations.  The current strategy is to only apply OLM for sensor calibration extension when the 
predictive uncertainties are less that the drift limits used in the set point calculations. 

Requirement 3: 
The algorithm used for on-line monitoring be able to distinguish between the process 
variable drift (actual process going up or down) and the instrument drift and to 
compensate for uncertainties introduced by unstable processes, sensor locations, 
nonsimultaneous measurements, and noisy signals.  If the implemented algorithm and/or 
its associated software cannot meet these requirements, administrative controls, including 
the guidelines in Section 3 of the topical report for avoiding a penalty for 
nonsimultaneous measurements could be implemented as an acceptable means to ensure 
that these requirements are met satisfactorily. 

All of the algorithms currently being considered for OLM were designed with the intent that they 
distinguish between the process variable drift and the instrument drift.  The three techniques described in 
this report (AANN, AAKR, and AAMSET) use the correlation of the instrument channels to differentiate 
the instrument drift from process changes.  These techniques are not as susceptible to common mode drift 
because the correlation values for process drifts will be different than those for multiple instrument drifts.  
Furthermore, a model’s sensitivity (its ability to make correct sensor predictions when a sensor is faulted) 
is computed and accounted for in EULM detectability algorithms.   

52 



 

Some signals may be too noisy or their predictions too uncertain for them to be candidates for OLM-
based sensor calibration extension without changing set point calculations.  Currently, EPRI and utilities 
investigating OLM indicate that normal manual calibrations would be used in these cases. Additionally, by 
applying an OLM model to historic data, sensors that are too noisy and fall outside the acceptable region 
can be identified before the OLM system is implemented.  Any problems with data acquisition must be 
handled on a case-by-case basis. 

Requirement 5: 
Calculations for the acceptance criteria defining the proposed three zones of deviation 
(“acceptance,” “needs calibration,” and “inoperable”) should be done in a manner 
consistent with the plant-specific safety-related instrumentation set point methodology so 
that using an on-line monitoring technique to monitor instrument performance and extend 
its calibration interval will not invalidate the set point calculation assumptions and the 
safety analysis assumptions.  If new or different uncertainties should require the 
recalculation of instrument trip set points, it should be demonstrated that relevant safety 
analyses are unaffected.  The licensee should have a documented methodology for 
calculating acceptance criteria that are compatible with the practice described in 
Regulatory Guide 1.105 and the methodology described acceptable industry standards for 
trip set point and uncertainty calculations. 

The OLM allowance and uncertainties are to be applied n such a way that they do not affect the set 
point calculations.  The uncertainties unique to OLM, such as the process parameter estimate uncertainty 
and single-point monitoring uncertainty, reduce the OLM drift allowance.  EPRI Final Report 1007930 
[2004] provides the methodology of the drift allowance calculations.  This methodology ensures that the 
Technical Specification trip set point and related requirements do not require revision.  Volume 1 of this 
series includes a discussion of OLM’s relationship to set points. 

Requirement 6: 
For any algorithm used, the maximum acceptable value of deviation (MAVD) shall be 
such that accepting the deviation in the monitored value anywhere in the zone between 
parameter estimate (PE) and MAVD will provide high confidence (level of 95%/95%) 
that drift in the sensor-transmitter and/or any part of an instrument channel that is 
common to the instrument channel and the on-line monitoring loop is less than or equal 
to the value used in the set point calculations for that instrument. 

Requirement 7: 
The instrument shall meet all requirements of the above requirement 6 for the acceptable 
band or acceptable region. 

The analytical uncertainty calculation methods presented in this report yield point-wise predictions, 
where each parameter estimate has an associated uncertainty estimate.  However, when using Monte Carlo 
techniques the point-wise bias predictions form distributions that require quantification of 95%/95% 
levels.  Engineering judgment must be used to determine the appropriate quantification method depending 
on the distribution.  An example of one such method is to use the 95th percentile bias value, meaning that 
95% of the bias values are smaller than the chosen metric.  When combined with the variance estimate, it 
produces a conservative estimate of standard error of the predictive uncertainty.  Subsequently, when the 
uncertainty magnitude is quantified, a t-statistic is chosen that provides 95% confidence level.  This 
method ensures that Requirements 6 and 7 are met.  Although there may be other appropriate methods for 
computing uncertainty besides those presented in this report, it is important that they compute the 
uncertainty components in a conservative manner (such as this 95th percentile method) if they are applied 
to OLM.  Otherwise, the uncertainty may not meet a 95% confidence with 95% certainty and allow faulted 
sensors to stay in operation when they should be investigated further. 
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Overall, the SER requirements illustrate the importance of estimating the uncertainty of the plant 
parameter estimate so that the MAVD and ADVOLM can be established in a manner that ensures plant 
safety.  (For a detailed explanation on calculating the MAVD and ADVOLM drift limits, the reader is 
referred to Volume 1 of this series).  Overall, the quantification of this uncertainty is one of the most 
critical issues for the acceptance and safe-use of OLM.  This section provides a general framework for 
estimating a model’s predictive uncertainty.  First, the theory of error propagation will be presented.  Next, 
the problem of estimating uncertainty will be discussed in depth and will conclude in the production of a 
set of well-defined equations and requirements that need to be addressed in deployed OLM systems.  This 
discussion will then be followed by two sections that address peripheral concerns in uncertainty analysis, 
specifically methods for estimating bias and denoising techniques used to estimate a set of data’s true, 
noise-free values. 

3.1 Problem Statement 

Before the uncertainty of an empirical model may be estimated, the structure of uncertainty must be 
examined and several generalities addressed.  This section will first define the problem of estimating 
uncertainty explicitly and then address several general problems that are readily apparent from this 
definition. 

The purpose of the OLM system uncertainty analysis is to provide a traceable methodology for 
developing an estimate of the uncertainty for a given set of training data and model architecture. 

Suppose that a sensor is monitoring a steady state value and contains normally distributed noise, or 
measurement error, with a mean and variance of 0 and , respectively.  This sensor’s output will, 
therefore, have the probability distribution illustrated in Fig. 3-1, where xi is the measured variable’s “true” 
value.   

2
εσ

 

 

Fig. 3-1.  Probability distribution for steady state sensor output. 

 
If these sensor data were used to construct an empirical model, the distribution of the predictions will 

be slightly different than the sensor’s distribution; because empirical modeling requires the trade-off of 
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generality and accuracy, the distribution of its predictions is inherently different than that of the data used 
to build the model.  This difference may be seen in Fig, 3-2, where ˆ( )iE x  is the model’s expected 

prediction and ˆixσ  is the standard deviation (or square root of the variance) of the model predictions. 

 

 

Fig. 3-2.  Probability distributions for measured and predicted sensor values. 

 
This difference can be analyzed through a bias-variance decomposition of the model’s predictive 

uncertainty.  In short, this decomposition states that the uncertainty of a model’s predictions is a 
combination of its systematic error (bias) and random error (variance).  

In the next section, the derivation of the bias-variance decomposition will be presented.  Next, the 
uncertainty intervals that quantify the model uncertainty will be presented.  Finally, a series of 
requirements for an uncertainty analysis in relation to OLM systems will be presented. 

3.1.1 Bias-variance decomposition 

The uncertainty of an empirical model’s predictions may be broken into two major components: 
variance and bias.  The variance measures the random error of the model’s predictions, while the bias 
measures any systematic error.  This decomposition will now be explicitly derived. 

The derivation presented in this section is based upon that of Tamhane and Dunlop [2000].  To begin, 
the mean squared training error (MSE) can be calculated for different data sets.  If it is calculated for the 
data used to construct the model, it is called the training MSE.  If it is calculated for data not used in model 
development, it is called the test MSE.  The training MSE is defined to be the average squared differences 
between a model’s predictions and the target values (the measured values supplied to the model during 
development). 
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MSE x x x
n

 (3.1.1.1) 

 
where 

 xi is one of n target values;  

  is a model’s estimate of xi. ˆ ix

The MSE measures how close a model’s predictions are to their target values.  The smaller the MSE, 
the closer the model fit is to the data.  It is important to realize that when the MSE is calculated for the 
model with a data set that was used to construct the model (MSETrain), it may not be a good metric for the 
future predictive performance of the model.  This is because a model may learn the random variations in 
the training data that are not duplicated in future data.  This is called overfitting the training data: learning 
the noise and not just the underlying function.  The future predictive performance of a model is quantified 
by the MSE calculated on data not used during training but indicative of future operations. The test MSE 
can be written in terms of the expected value: 

 

  (3.1.1.2) ( )2ˆ ( ) .⎡ ⎤= ⎣ ⎦x - xTest irrMSE E m + ε

⎤⎦

 
2( ( ))⎡⎣ x - x)E m  is termed the reducible error, and  is called the irreducible error with εirr

 
 [ ] ( ) 20, .εε = ε = σirr irrE Var  (3.1.1.3) 
 

The reducible error is the expected squared distance between the prediction and the true model of 
x: m(x).  The irreducible error is the difference between the true parameter value and the measured 
parameter value.  It is caused by random process and measurement noise, and because it cannot be 
deterministically modeled, it is termed irreducible.   

x̂

 
 [ ]2 .εσ = −true measuredE x x  (3.1.1.4) 
 

The reducible error explains how adequately the model can represent the true function m(x).  It 
depends only on the model architecture chosen, the training procedure, and the specific data set.  The 
reducible error can be further decomposed into its bias and variance components.   
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The simplification made in line four comes from: 

 

 [ ]ˆ ˆ ˆ2 ( ( )) ( ( ) ( )) 0 ,− −E x E x E x m x =  (3.1.1.6)  

due to: 

 [ ] [ ] [ ] [ ] [ ]ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) 0 .⎡ ⎤− = − = − =⎣ ⎦E x E x E x E E x E x E x  

 

This uses that fact that the mathematical expectation of a mathematical expectation is just a mathematical 
expectation [Heskes 1998].  For the same reasons, 

 

  (3.1.1.7) [ ]( ) [ ](2ˆ ˆ( ) ( ) .⎡ ⎤− = −⎢ ⎥⎣ ⎦
E E x m x E x m x )2

 

Because the variance is defined as the expected squared difference of a parameter from its expected 
value, the variance for a model’s prediction may be written as 

 

 ( ) [ ]  2ˆ ˆ ˆ .⎡ ⎤= −⎣ ⎦Var x E x E x  (3.1.1.8) 

 

Next, recall that the bias is defined as the systematic error of a model.  This may be written in 
equation form as the difference of a model’s expected prediction from the true, target values: 

 

 ( ) [ ]ˆ ˆ ( ) .= −Bias x E x m x  (3.1.1.9) 

 

Equation (3.1.1.4) is the functional form of the bias-variance decomposition and serves as the 
foundation for the methodologies presented in this report.  In the next section, this decomposition will be 
used to define the uncertainty intervals that quantify model uncertainty.  However, the total uncertainty, 

, is a combination of model bias, variance, and the irreducible error: ˆ( )U x
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  (3.1.1.10) ( ) ( ) ( ) 2 2ˆ ˆ ˆ .ε⎡ ⎤= + + σ⎣ ⎦x x xU Var Bias

 

Recall that the irreducible error is the variance of the target about the true mean and cannot be 
controlled through the modeling process. It is caused by the random disturbances in the measurement 
process and is essentially the variance of the process and measurement noise.  Process noise is the 
stochastic perturbation of a parameter about its true value that cannot be modeled deterministically.  This 
type of noise is particularly evident in flow and level sensors, which have natural fluctuations due to 
“waves” about the intended value.  Measurement noise refers to the noise inherent in the sensor.  
Electronic noise is the noise resulting from data transfer from the sensor to a central processor.  These 
three noise contributors combine to cause random variances in the data.  Often, the term is considered 
negligible and is neglected.  However, to be sure this assumption holds, the amount of noise in the process 
must be quantified.  This can be accomplished using one of the denoising techniques discussed later in this 
chapter.   

3.1.2 Uncertainty intervals 

Assume that a system is represented by the following equation: 

  (3.1.2.1) ( ) .= + εy f x

 
where  

 y  is the measurable value for system variable being modeled; 
 x  are parameters used to infer the value of y; 
 f(x)  is the true system value;  
ε  is normally distributed random noise with a mean of 0 and variance  2 .εσ

 
Although one desires the model to represent the true function f(x), only contaminated measurements y 

are available for model development.   

The confidence interval (CI) is a quantification of the agreement of model predictions with the 
system’s true value and is a measure of the magnitude of ˆ( ) ( )−f x f x , where ˆ ( )f x  is an estimate of 
f(x) for a given set of predictor variables x.  The confidence interval only accounts for the variance 
component of the uncertainty or the distribution of the quantity ˆ( ) ( )−f x f x .  For a confidence level of 
1 – α (e.g., 1 – α = 95%), the confidence interval is defined by Tamhane and Dunlop [2000] to be the 
interval [L, U], which includes f(x) with a preassigned probability of 1 – α: 

 
 ( ) 1 .⎡ ≤ ≤ ⎤ = − α⎣ ⎦P L f x U  (3.1.2.2) 

 

The prediction interval (PI) is a more practical measure of uncertainty and quantifies the agreement of 
model predictions with the actual measurements of the response (i.e., a measurement of the magnitude of 

, where  is an estimate of y).  It can be seen that the confidence interval is enclosed within the ˆ −y y ŷ

prediction interval. In general, CI + ε = PI or more specifically ( )ˆ ˆ( ) ( ) ( )− + ε = −f x f x y f x . For an 

uncertainty level of 1 – α the PI may be written as: 
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 [ ] 1 .≤ ≤ = − αP L y U
 

 (3.1.2.3) 

An alternative definition of confidence and prediction intervals is that a CI is a measure of the 
ncertainty of a model’s expected prediction, while the PI measu
rediction.  In other words, because the expected response is f(x), specifically E(y) = f(x), the CI is the 
nce

s, 
 noise 

 

u res the uncertainty for each model 
p
u rtainty for the model’s expected prediction.  Conversely, since the PI uses the data itself, the 
prediction interval is the uncertainty for each individual model’s prediction.   

These definitions will now be expressed in terms of the quantities described in the previous section
starting with the CI.  In the following equations, it is assumed that methods exist for estimating the
variance, the model prediction variance, and model bias. 

For a confidence level of 1 – α, the CI may be written as: 

 

( ) ( ) 2
, /2ˆ ˆ− α± +n p ,E y t Var y Bias

 (3.1.2.4) 

 n  is the number of training observations; 
 p  is the number of variables used to infer y; 

is the t-statistic that approximates the normal distribution for n – p degrees freedom and 

 
where  
 

, /2− αn pt  
confidence level 1 – α; 

( )ˆE y  

Notice that the CI does not 
uncertainty in e al variability of the values 
being modeled.  

 

is the expected model prediction of yy. 

contain a noise term ( 2σ ).  This illustrates the fact that CI measures the 
model’s expected predic

ε

th tion and does not account for the natur

For a confidence level of 1 – α, the PI may be written as: 

 

( )2
, /2ˆ ˆˆ− α ε± σ + +n p

2 ,y t Var y Bias  (3.1.2.5) 
 
where is an estimate of the variance of the noise on y. 

The PI equation may be further simplified since for large numbers of training observations (Volume 3 
f this NUREG/CR will explore how to determine the proper number of training observations) and a 

 

2ˆεσ

o
confidence level of 95%, the t-statistic approaches 2: 

( )2 2ˆ ˆ2 ε± σ + ˆ .+y Var y Bias  (3.1.2.6) 

 

Because the PI contains a noise variance term, it is by definitio
more conservative estimate of the model’s uncertainty. 

Now, it must be decided if the PI or CI is better suited for OLM uncertainty analyses.  To make this 
determination, it must be known how the uncertainty estimates are used by the plant to monitor drift.  Most 

n larger than the CI and is, therefore, a 
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com
e drift limit.  As explained in Chap. 1, the residual 

is th  

I 
 because its values typically fall below the measurement’s drift limit.  

How et.  

ics 

een 

le.  

t 
 estimated to develop a PI; specifically, the noise variance, the model prediction 

variance, and the model prediction bias.  When calculating a CI, the noise variance calculation is not 

the variance of model predictions, 

ictions. 

Th rst r is is to estimate the true process values.  For this 
discussion, designate

monly, OLM monitors drift by determining when the residual exceeds a threshold, which is 
constructed by subtracting the model uncertainty from th

e difference between the sensor and the model prediction.  Oftentimes, noise in sensors measurements
inflate the PI (which includes the noise variance term) to an amount that exceeds the threshold, even when 
no drift is present.  Examples in Chap. 7 illustrate the large PIs produced when noisy sensors are included 
in the OLM model.  Thus, it can be concluded that PIs are generally not directly applicable to OLM 
uncertainty quantification.  In contrast, CIs usually give acceptable OLM uncertainties.  The examples in 
Chap. 7 demonstrate the CI’s suitability for OLM uncertainty analyses.  However, there must be 
justification for using the CI.  This needed justification comes from further examination of the CI and its 
application to the residual. 

If a prediction’s CI or PI includes the measured or true value respectively, it is said to “over” it.  
Therefore, a 95% PI implies that the measured value is covered 95% of the time; whereas a 95% 
confidence interval implies that the true value is covered 95% of the time.  As previously discussed, the C
is desired for OLM uncertainty

ever, the CI assumes that the true value is known and cannot be applied if the assumption is not m
If the system is sampled and a denoising technique applied, a good estimate of the true value can be 
obtained.  If filtering is used, the bandwidth must be selected so that the noise ( 2

εσ ) is removed, but the 
process dynamics are retained.  To do this, the system must be sampled faster than the process dynam
and the filter set appropriately.  However, the residual can be filtered without these requirements.  The 
residual can be filtered because the process dynamics are in both the variable and estimate and have b
canceled out when forming the residual.  The only dynamics in the residual are  drift dynamics. The 
residual contains the drift and the random noise ( 2

εσ ) that cannot be modeled. Because drift dynamics are 
very slow, a lower sample rate is required to filter the residual than would be required to filter the variab
Thus, the residual can be filtered without losing the dynamics of interest.  The filtered residual can be 
interpreted as the true value of the residual, because none of the dynamics have been lost and only the 
noise removed through filtering.  This fact means that a CI can be appropriately applied to the filtered 
residual, because the true value is assumed to be known.  By applying a CI to the filtered residuals, one 
can monitor for drift and the uncertainty is related to the prediction of drift and not the prediction of the 
variable’s true value. 

3.1.3 Requirements 

A set of general requirements may be derived by the components of Eq. (3.2.2.6).  It can be seen tha
three terms need to be

the

necessary. 

The three contributing terms are redefined as follows: 

1. 2
εσ , the estimate of the noise variance on y, 

2. ˆ( )Var y
3. Bias, the systematic error or bias of model pred

e fi equirement of an OLM uncertainty analys
 ˆ ( )f x is an estimate of f(x).  This provides the required information needed to 

estimate e

 

 th  noise variance.  First, an estimate of the noise distribution is calculated. 

 ( ) { }ˆˆ x with   1,2, , .ε = − = Ki i iy f i n  (3.1.3.1) 
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Next, the noise variance is estimated by calculating the sample variance of the estimated noise 
istribution: d

 

( ) 22

1

1 ˆ ˆˆ .ε
=

σ = ⎡ε − ε ⎤ ⎣ ⎦∑ i i
i

E
n

 (3.1.3.2) 

Equation (3.1.3.2) reduces to 

 

n

 

 

[ ]22

1

1 ˆˆ ,ε
=

σ = ε∑
n

i
in

 (3.1.3.3) 

 

ecause, as explained in the previous section, 

The variance of the model predictions may be found by either applying the analytic equations or using 
pling technique.  Each of the estimation methodologies has its own requirements, 

sed 

 estimate of the “true” process data must be obtainable (see Sect. 3.3), 

imated (see Sect. 3.2). 

3.2 M h

This section considers two empirical methods for estimating empirical model bias.  It is important to 
not the only approaches to bias estimation.  NIST Technical 
nce of some of the many other ways bias can be calculated.  

The 

following definition: 

 (3.2.1.1) 
 

Such a method is called direct bias calculation.  It is shown schematically in Fig. 3-3. 

b ( )ˆ 0ε =iE . 

a Monte Carlo resam
which will be discussed in Chaps. 5 and 6, respectively.   

The third and final contributing factor to the PI is the systematic error of the model predictions.  Two 
methodologies may be used to estimate this quantity.  The details of these methodologies will be discus
in Sect. 3.2.   

The result of this discussion is the identification of three values that must be estimated to develop 
empirical model prediction intervals: 

1. an
2. the model prediction variance must be estimated (see Sects. 4 and 5), and 
3. the model bias must be est

et ods for Estimating Bias 

note the methods presented in this report are 
Note 1297 [1994] provides a thorough refere

methods in this report are included because they are the most frequently used methods by researchers 
in this field.  The first method makes use of the statistical definition of bias, while the second uses the bias-
variance decomposition equations derived in Sect. 3.1.1. 

3.2.1 Direct bias calculation 

The first method of bias estimation makes use of the 

 
 ( )ˆ .= − trueBias E x x
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Fig. 3-3.  Schematic diagram of the direct bias estimation. 

 

A key idea behind this bias estimation method is that the sensor measurements are filtered to obtain 
an e d 

s.  (Note 

l 
n 

rgest 

d 7 

 is given 

stimate of the virtually noise-free data and the parameters of the noise distribution.  Using the obtaine
“noise-free” measurements and the estimated variance of the noise, bootstrapping, or a similar 
Monte Carlo technique, is performed, and the training data are used to construct multiple model
that the bootstrap and other Monte Carlo simulation methods are discussed more fully in Chap. 5.) Then, 
these models are applied to the validation data to obtain new model predictions.  Assuming the “noise-
free” filtered data to be the true data, the difference between the “noise-free” observations and the mode
predictions is computed at a given point of interest for each of the many models.  This calculation yields a
estimate of the bias for each of the bootstrap models.  This distribution of bias estimates could simply be 
averaged to obtain a single value for the bias.  However, it is more conservative to use the top 95th 
percentile value of the bias estimates when calculating the single bias value.  If the 95th percentile la
bias is used, then the interval will cover 95% of the actual errors.  In comparison to a simple average, this 
95th percentile calculation method produces a more appropriate and conservative estimate of the bias, 
which is desired for OLM.  This “worst-case” estimate of the bias ensures that SER Requirements 6 an
[which state that both the ADVOLM and MAVD provide high confidence (level of 95%/95%) that drift in 
the sensor-transmitter is less than or equal to the value used in the set point calculations for that 
instrument] are met.  Provided that n estimates have been made of x, this bias estimation method
by: 
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The denoised data are assumed to be approximately equal to the true values of the measured quantity.  

Fina

is bias estimation method, an example based upon synthetic data for three 
nonr system 

lly, the estimate of the model bias is obtained as the difference between the denoised data and the 
model prediction.  

To illustrate th
edundant sensors will now be presented.  The following equations are taken to be the true 

function that produces the true noiseless data that, in reality, are always unknown to the experimenter.  
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 (3.2.1.5) 

 
As can be seen in Fig, 3-4, the system functions produce three data sources of highly correlated 

quantities.  The simulated signals feature highly linear regions, as well as regions of relatively large 
curvature (a Gaussian peak).  Because both linear and nonlinear behaviors have been incorporated into this 
example, it is expected to reveal all aspects of bias estimation with the direct estimation method. 

 

Fig. 3-4.  True noiseless data. 

 

To simulate real-world measurements, the true models are contaminated by Gaussian noise with a 
constant variance. 
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  (3.2.1.6) ( ) ( )1 1= +%y t y t

  (3.2.1.7) ( ) ( )2 2= +%y t y t

  (3.2.1.8) ( ) ( )3 3= + ε%y t y t

 

Here, ε1 are independent and identically distributed (i.i.d.) Gaussian random variables with a mean of 
0 and a variance of . Gaussian noise is used because the noise would be due to several sources 
and the Central Limit Theorem states that the resulting distribution tends toward Gaussian as the number 
of sources tends toward infinity.  Also, note that i = {1, 2, 3}.  The results of this addition may be seen in 
Fig. 3-5. 

2 0.04εσ =

 

 

Fig. 3-5.  Three sources of simulated noisy data. 

 
The major task in the direct estimation technique is the denoising procedure, because the most 

important issue upon which the final estimated bias depends is how close the denoised estimates are to the 
true values.  Ideally, the denoising provides the exact true values of the measured quantity so that the 
difference between the model predictions and the denoised data in the final result is only due to uncertainty 
inherent in Monte Carlo simulations.   

A number of methods have been developed to filter random noise out of contaminated data, the 
simplest of which are median filtering and local averaging.  Section 3.3 of this document considers two of 
the more sophisticated methods:  wavelet denoising and Independent Component Analysis (ICA).  These 
techniques are discussed and compared in the next section.  Additional denoising investigations are 

 64



 

included in Volume 3 of this series.  In that study it is shown that if the denoising technique is applied in 
an appropriate manner, the choice of technique has little impact on the uncertainty prediction. 

An alternative denoising method is used in this numerical example: local polynomial smoothing.  One 
major assumption of this smoothing technique is that the true generating model is assumed to be smooth 
and have a smooth first-order derivative.  A detailed discussion of local polynomial smoothing can be 
found in Wand [1994].  In short, local polynomial smoothing approximates the target function by fitting a 
certain order polynomial in the vicinity of a given query point.  It is simply a weighted average with the 
weighting determined by how “close” a point is to the point in question.  A widely known local 
polynomial smoothing method is the Nadaraya-Watson kernel estimator [Nadaraya 1964, Watson 1964], 
as follows: 
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where n is the number of observations of ti, 

   t is the query point,  

   is a kernel function possessing the following properties: ( )hK u

 

  ( ) ( )1 and      0 .= =∫ ∫h hK u du uK u du

 

The most commonly used kernel function is the Gaussian function, which is given by the following 
equation: 
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 (3.2.1.10) 

 

The bandwidth parameter, h, controls what is considered “close” and therefore, also determines the 
smoothness of the estimates.  The most common choice for the similarity argument u is the Euclidean 
distance between the query vector and the given observations.  

This numerical example makes use of the local linear smoothing to obtain noise-free values of the 
simulated measurements.  The optimal bandwidth parameter is obtained through minimizing the Leave-
One-Out Cross-Validation metric [Stone 1974, Chapelle 2002].  The results of the denoising procedure are 
shown in Fig. 3-6.  
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Fig. 3-6.  Results of the local linear smoothing. 

 
A brief overview of Monte Carlo techniques is now given with a more complete description given in 

Chap. 5.  Monte Carlo techniques can be used to estimate the variance portion of the uncertainty.  A good 
reference for these techniques is Efron and Tibshirani [1993].  The basic idea is to simulate the uncertainty 
of the empirical model by constructing a large number of example empirical models and quantifying the 
variance of their predictions.  Each model is constructed by either using a random sample of the training 
data (bootstrap), or by modeling the deterministic and random portions of each signal and creating 
simulated samples.  The deterministic portion is estimated through denoising the measured signals, and the 
random portion is estimated by modeling the noise with a distribution.  Simulated samples are constructed 
by combining the denoised signal with a sample from the modeled distribution. 

In this example, the smoothed data are taken to be the “noise-free” data.  The estimate of the noise is 
obtained by subtracting the smoothed data from their noisy counterparts resulting in an estimate of the 
sample noise.  Then, the variance of the sample noise is calculated.  Table 3-1 summarizes the estimated 
sample noise standard deviations.  In this example the noise contaminating the observations is assumed to 
have a Gaussian distribution with zero mean.  This assumption is important because the Monte Carlo 
sampling is performed by selecting random variables from the estimated distributed.  
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Table 3-1  Summary of noise standard deviation 

Sensor 
No. σ̂  

Estimation error 
ˆ

100%
⎡ ⎤σ − σ ×⎢ ⎥σ⎣ ⎦

true

true
 

1 0.186 7% 

2 0.179 10% 

3 0.165 17% 

 

The Monte Carlo simulation is performed according to the following algorithm: 

1. generate a set of normally distributed random values with zero mean and the desired standard 
deviations, 

2. add the generated random values to the filtered data, 
3. divide the noisy data into a training set and a validation set, 
4. construct a data-based model using the training data, 
5.  use the model to produce corrected estimates of the validation query data, 
6. estimate the bias between the validation data and query estimates, and 
7. go to step 1 unless the desired number of Monte Carlo runs is reached. 

In this example, the data-based model mentioned in step 4 is taken to be an auto-associative kernel 
regression-based estimator (AAKR) discussed earlier in Chap. 3.  Because the AAKR model employs a 
kernel bandwidth parameter, an arbitrary value of 1 has been used in this numerical experiment.  The 
parameter value of 1 is expected to be large enough to introduce a small bias into the model predictions.  
The Monte Carlo predictions are used to perform direct calculation of the model bias.  Because truly noise-
free data are known in this simulation, the true bias can be easily calculated as the difference between the 
true data and the model prediction.  A single bias estimate is obtained by only considering the 95th 
percentile value of the calculated biases.  Figure 3-7 shows the estimated bias and true bias.  As can be 
seen, the estimates are relatively close to the true values, but deviate in certain regions.  Signal biasing 
usually occurs in high-gradient areas, but it may also occur in areas where the training data do not 
adequately constrain the problem.  
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Fig. 3-7.  Bias introduced by the AAKR model. 

 
In this case, the deviations from the true bias are mostly caused by the imperfection of the smoothing 

procedure.  The Monte Carlo simulation also allows the estimated bias to deviate from the true values 
since the Monte Carlo samples have not been performed on the true data but only the denoised values. 

3.2.2 Application of bias-variance decomposition 

The next example illustrates another method of bias estimation.  This method is based upon the bias-
variance decomposition equation [Eq. (3.2.2.1)] derived in Sect. 3.1.1:  

 
 ( ) ( ) ( ) 22ˆ ˆ .ε= σ + + ⎡ ˆ ⎤⎣ ⎦U x Var x Bias x  (3.2.2.1) 

 

Recall that the left-hand side of Eq. (3.2.2.1) is quantified by the MSE.  Having a value for the MSE, 
one can obtain the estimate of the squared bias as follows:  

 

  (3.2.2.2) ( ) ( ) ( )2 2ˆ ˆ ˆ .ε= − −Bias x MSE x Var x σ

 
The irreducible error term is present in Eq. (3.2.2.2) because the MSE is generally calculated using 

the validation data, rather than the training data.  Because the validation data were not used to construct the 
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model, the MSE for the validation data is a measure of the model’s true future predictive performance and 
requires that be included.  2

εσ

The model’s prediction variance can be estimated using the Monte Carlo simulation, similar to that 
described in the previous example.  The Monte Carlo simulation, in turn, can be used to evaluate the MSE.  
The following algorithm is proposed to perform the MSE estimation: 

1. denoise the data and estimate the irreducible error , 2
εσ

2. divide the original noisy data into a training set and a validation set, 
3. use Monte Carlo simulation to construct a data-based model with the training data, 
4. obtain the estimates for the validation query data, 
5. evaluate the squared difference between the noise-free signal and the model estimates, 
6. go to Step 3 unless the desired number of Monte Carlo runs is reached, 
7. calculate the variance of each validation sample over the Monte Carlo simulations, 
8.  compute an estimate for the bias for each run using Eq. (3.2.2.2), and 
9. calculate the 95th percentile value of the bias estimates to obtain a single value for the bias. 

The data-based model can be constructed with the data randomly sampled from the given 
measurements.  The diagram depicted in Fig. 3-8 shows the bias estimation method based on evaluating 
the MSE of the validation data. 

 

 

Bias x MSE x Var x2 2( $) ( $) ( $)= − −σε

Fig. 3-8.  Schematic diagram of the bias estimation through calculating the MSE. 

 

The Monte Carlo simulation is the key algorithm of the bias estimation method.  To illustrate this 
point, a series of numerical experiments will be performed.  For the sake of clarity, the first numerical 
experiment is conducted using the truly noise-free data.  Such a “toy” experiment should yield a clear 
understanding of the key ideas behind the estimation method.  This example computes the bias of an 
AAKR model.  As can be seen in Fig. 3-9, the estimated squared bias is very close its true value.  This 
shows that the bias-variance decomposition equation may be used to estimate the squared bias of a 
model’s predictions.  The slight deviations of the estimates from the true bias values can be explained by 
the random nature of the Monte Carlo simulation involved in the estimation.  There can also be seen to be 
a few relatively large departures from the true bias.  They are likely to be due to the inaccurate 
Monte Carlo-based estimation of the prediction variance. 
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Fig. 3-9.  Squared bias obtained with true noise-free data. 

 
In the next experiment, the bias is calculated using unfiltered noisy measurements.  Figure 3-10 

shows the squared bias estimates.  Because denoising was not performed, the bias is poorly estimated.  
This incorrect bias estimation would negatively impact the uncertainty calculation performed by an OLM 
system.   
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Fig. 3-10.  Squared bias estimated on the observed data. 

 
From the conducted experiments, it can be concluded that the accuracy of the considered estimation 

method depends on denoising the measurements.  The closer the filtered data are to the true data, the more 
accurate the estimate of the model bias.  These experiments also illustrated that the bias is largest in areas 
of high curvature.  This is attributed to the fact that empirical models often have a tendency to 
oversmooth sharp peaks in the data.  In nuclear power plants, the data are mostly steady state and smooth, 
so the biasing is usually smaller and more consistent. 

3.3 Denoising Techniques 

Denoising plays a critical role in an uncertainty analysis; however, Volume 3 of this series shows 
that the choice of denoising technique has limited effect on the prediction uncertainty when correctly 
applied.  As described in Sect. 3.3, denoising is an important step in estimating the bias.  It is also needed 
to estimate the value of . This quantity is commonly termed the “irreducible error” because it cannot 
be controlled through the modeling process and is due to random disturbances in the measurement 
process.  Essentially,  quantifies the process noise.  Noise is somewhat hard to define, and many 
individuals/organizations argue about its exact definition.  In general, though, the “signal” is considered 
to be the information-carrying part of the input and “noise” to be any additional informationless part.  In 
relation to nuclear power, noise is assumed to be normally distributed with a mean of 0 and variance . 

Therefore, the only parameter necessary to quantify the noise is . At first, estimating this quantity may 

2
εσ

2
εσ

2
εσ

2
εσ
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seem rather straightforward, but, unfortunately, many problems arise when using actual data to make this 
determination.  

3.3.1 Filtering 

Many previous analyses have simply employed a filtering technique to determine the noise level in a 
set of data.  The filtered signal is subtracted from the unfiltered signal to isolate the noise.  Although this 
method is often valid, several factors must be considered.  The first is the sampling rate.  If the data are 
not sampled at a rate faster than the process dynamics, then filtering would smooth the process dynamics 
and overestimate the noise level.  To elaborate, consider Fig. 3-11, which presents temperature data from 
a nuclear power plant.  In the figure, the units of time are not specified.  If the time on the x-axis is in 
units of seconds or even minutes, then it would not be physically possible for the temperature to change 
quickly enough to create the large fluctuations exhibited by the data.  In this case, filtering could be 
performed without losing information about the actual process.  However, if the time is in days, or 
perhaps even hours, the process variable might vary at the rate shown in the data.  Thus, filtering would 
not be allowed.  Engineering judgment always must be used before applying a standard filtering technique 
to data because it requires prior knowledge about the data and the underlying process.  Filtering should, 
therefore, only be used when there is certainty that the process dynamics will not be lost. 

 

 

Fig. 3-11.  Plot of temperature data. 

 
Another potential problem with using standard filtering to estimate the noise level is that it cannot 

distinguish between common process noise and independent instrument noise.  As depicted in Fig. 3-12, 
redundant sensor groups in nuclear plants contain common as well as independent noise sources.  As 
shown in the figure, each redundant sensor contains a source signal indicative of the actual process 
(denoted by P in the figure).  However, generally redundant sensors will not produce exactly identical 
readings, even though they are measuring the same process.  The discrepancy between correctly operating 
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redundant sensor measurements is due to the noise contamination.  Although given the term “noise,” the 
common noise is actually reflective of the process.  Some examples of common noise are water-level 
fluctuations due to turbulent flow or the high-frequency boiling component of a signal measured by a 
steam generator level detector.  Each sensor also contains some unique independent noise.  Independent 
noise is frequently caused by electrical noise contamination of the specific sensor signal.  Because 
common process noise is indicative of a process variable’s state, then the irreducible error should be 
comprised only of independent noise and not common process noise.  The figure shows each sensor as 
having only a single common and independent noise source.  In actuality, a sensor can be contaminated 
by multiple common and independent noise sources. 

 

 

Fig. 3-12.  Diagram of real world signals containing both common and independent noise. 

 
When one is using conventional frequency-based filtering techniques, there is no guarantee that only 

independent noise is removed.  Frequently, common noise, which should not be filtered, is also removed 
because both may contain similar frequency content.  Because there is usually little prior knowledge that 
is useful in differentiating between common and independent noise, it is difficult to select proper window 
sizes or filtering parameters.  Generally, the small addition of common process noise in the error term is 
considered negligible.  However, in situations where the common process noise is exceedingly large, the 
predictive uncertainty may be inflated to the point where the OLM drift limits are exceeded.  Therefore, 
standard smoothing methods may be unsuited for OLM applications.  Two methods that may be better 
suited for this application are wavelet denoising and independent component analysis (ICA). 

3.3.2 Wavelet denoising 

The wavelet denoising technique investigated in this work was developed by Miron [2001] and was 
initially used to produce artificial data sets that closely resembled raw nuclear plant data.  This approach 
decomposes a signal, S, into an approximation, A, and set of detail components, D.  If the decomposition 
level is L, then this approximation may be written as: 
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The approximation component represents the low-frequency (system behavior) portion of the data, 
while the detail components represent the high-frequency (noise) portions of the decomposed 
approximations.  As a signal is decomposed, at first only the high-frequency portions are removed.  As 
the decomposition level increases, the detail components begin to incorporate process dynamics that 
begin to be filtered along with the noise.  To avoid this, a proper threshold must be selected for the 
signal’s reconstruction.  Figure 3-13 depicts wavelet-based signal decomposition.  S is the original signal 
decomposed into its high- and low-frequency components.  The figure also shows that by the third 
decomposition, the detail components seem to contain portions of the signal. 

 

 

Fig. 3-13.  Wavelet signal decomposition. 

 
The detailed components, or noise, are removed from the signal by applying different denoising 

settings, such as wavelet type, thresholding strategy, and rescaling, to the decomposition [Misiti 2004].  
Each parameter combination is then “scored” by testing that the noise estimates are: 

1. normally distributed and white, 
2. uncorrelated with each other (correlation coefficient under a threshold, ~0.2), and  
3. have maximally reduced the variance of the original signal [Miron 2003].   

The denoising settings are chosen to optimize a combination of these criteria i to remove process 
noise and retain process dynamics.  If the estimated noise that is removed from each sensor is correlated 
with one another, one would expect that the correlated portion is actually process dynamics and should 
not be filtered.  The basic assumption is that the true noise is uncorrelated with itself in time and 
uncorrelated with the noise signals on the other sensors. 

3.3.3 Independent component analysis 

ICA is a statistical technique that can be used to denoise redundant signal sets.  It is most often 
applied to sensors monitoring safety-critical processes, which usually have high redundancy.  ICA 
expresses the observed data as a linear transformation of latent variables that are mutually independent 
[Hyvarinen 2001].  ICA has the capability to separate a true process signal (the signal and the common 
process noise) from the independent channel noise in a group of redundant sensors [Ding 2004].  It is 
assumed that because most nuclear power plant, safety critical sensors are generally redundant, the ICA 
technique will perform as well as, or better than, the wavelet denoising technique in estimating true 
process values.   
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ICA can be considered a non-Gaussian factor analysis technique that is used to separate independent 
sources.  The central limit theorem (CLT) states that if independent sources are summed, the resulting 
mixture is more Gaussian than the original sources.  To separate the individual sources from the mixture, 
ICA decomposes the mixture into components that are as non-Gaussian as possible. 

The ICA model assumes that p independent sources (S) are mixed by a linear mixing matrix (A) that 
results in p measured variables X: 

 

 X = A S  , (3.3.3.1) 
 
where  

X  is an n × p data matrix of n observations from p sensors, 

S  is an n × p matrix of p independent components, 

A  is an n × n matrix of unknown constants, called the mixing matrix [Ding 2004]. 

The sources (S) may be the deterministic portion of the process measurement, common process 
noise, and independent sensor noise.  

The ICA algorithm is used to determine how the variables are mixed.  The algorithm returns a 
constant (weight) matrix, W, so that the linear transformation of the observed variables: 

 
 Y = W X  , (3.3.3.2) 
 
results in the transformed components, yi, being as statistically independent from each other as possible.  
The maximally non-Gaussian signals, Y, are then assumed to be estimates of the original independent 
components.  In the case of OLM, one of the independent components is the signal (with common process 
noise) and thus the optimal parameter estimate.   

An ICA algorithm, called FastICA, is commonly used to accomplish this transformation.  This 
algorithm is readily available for use in MATLAB and many other programming languages.  The FastICA 
algorithm uses negentropy J(y) as the measurement of the non-Gaussianity of the components.  
Negentropy is a normalized version of differential entropy.  Because the Gaussian distribution is the most 
random and least structured of all distributions, it will have the largest entropy.  Thus, the negentropy 
value uses the entropy of a Gaussian distribution to gauge the non-Gaussianity of the distribution in 
question.  The negentropy of a distribution is zero only if the distribution is truly Gaussian.  Hyvarinen 
developed FastICA, and his text [2001] provides a complete reference to the algorithm and its theory.   

Two ambiguities of ICA are that the variances (energies) and the order of the independent 
components cannot be determined. These ambiguities are of concern when OLM is being performed 
because the component containing the parameter estimate needs to be identified and scaled back to its 
original units.  To elaborate, when the ICA algorithm is being executed, a p × p matrix W is returned.  
Each of the p rows in W contain the weight values used to construct independent components, with only a 
single row of weights corresponding to the true signal and common noise sources.  The other rows of 
weights correspond to independent noise.  The row of weights in W that contains the true signal and 
common noise must be distinguished from the other rows.  This is not always an easy task.  However, 
Ding [2004] has developed a method of selecting this row based upon the components’ correlation to the 
signals (X).  Once the component that contains the parameter estimate is identified, a rescaling method 
that minimizes the error between the component and the signals (X) is implemented.  

The major assumptions of the ICA algorithm are that the data are time-invariant and that, at most, 
only one of the independent components can have a Gaussian distribution.  Research has shown that these 
assumptions generally hold true for nuclear power plant data.  Because plants usually operate at nearly 
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100% power, the assumption of time-invariant data is usually met.  Obviously, when the plant undergoes 
a transient, the data become nonstationary and the ICA method fails.  However, transient data are often 
excluded from OLM estimations.  The assumption of a single Gaussian component also is met by most 
nuclear power operations.  This assumption is present because ICA cannot separate Gaussian noise 
sources.  Once multiple Gaussian sources are added they cannot be recovered.  Fortunately, with nuclear 
data, the measurements from each channel contain the process parameter, common noise sources, and 
independent channel noise sources.  Only if the process parameter and an independent noise source were 
both Gaussian, would ICA fail to yield an estimate of the noise-free signal.  Research has validated that 
the process components and noise components seldom have a Gaussian distribution.  Recall that noise 
sources are commonly assumed to have a Gaussian distribution because when noise sources are added, 
they tend toward Gaussian; however, this does not imply that the original sources were Gaussian.  

3.3.4 Comparison of ICA and wavelet denoising 

In this section, the results of a study comparing the filtering capabilities of ICA and wavelet 
denoising are presented (additional methods are presented in Volume 3 of this series to study the chosen 
technique’s effect on model uncertainty estimation).  First, both techniques were used to filter a simulated 
data set.  By using a simulated data set, the true noise statistics were known and used as a benchmark in 
evaluating the performance of each technique.   

For the simulated data set, we considered a source signal s that is described by the following 
equation: 

 
 ( )sin 2 .= πs t  (3.3.4.1) 

 
Here, t is uniformly distributed on the interval [0,10]. 

Three redundant sensors were simulated by introducing a small bias to the actual signal (s) and then 
adding both a common and an independent noise source.  In actual plant operation, common noise could 
result from the high-frequency boiling of a steam generator, while independent noise could be caused by 
the electrical contamination of an individual sensor.  Here common process noise, Nc (0,0.4), is modeled 
by drawing random numbers from the Gaussian distribution with a mean of 0 and variance of 0.4.  
Independent noise, Li (0,vi) is drawn from the Laplacian distribution with the variable-specific variance vi.  
These noise sources are added to each channel with differing weights in order to model a contaminated 
signal measured by a process sensor.  Also, by varying the variance of the noise, we can determine if 
either of the techniques’ performance changes significantly with different noise levels.  Thus, the three 
simulated redundant channels are constructed with the following equations: 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

sin 2 0,0.4 0,2.4 1.0
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The parameters used to evaluate performance were 

1. the average mean and variance of the estimated noise;  
2. the average squared error of the estimated true signal;  

3. the average fractional variance reduction, 
( )( )
( )( )

var
1

var
μ

=
μ

sX
X

 where Xs is the denoised signal, 

and X is the noisy signal;   

4. the average correlation of the noise estimates with each other, ; and  (( ),μ ε εxy est estp )

5. the average correlation of the noise estimate with its smoothed version, . ( )( ), ,,μ εxy i s i estp x

The first and second performance metrics (average mean and variance of the estimated noise and 
expected squared error) measure the accuracy of each denoising method’s ability to estimate the noise and 
the true parameter values, respectively.  The next parameter (fractional variance reduction) measures the 
extent of the denoising.  The final two parameters (average noise correlations with themselves and the 
smoothed variables) measure the denoising method’s ability to remove noise that is not correlated with 
other noise estimates or with the process itself.  All of the parameters were averaged over the three 
sensors to obtain a single estimate.  Because ICA is an iterative nonlinear optimization algorithm, which 
randomly initializes a weight matrix, there is a slight variability in its outcome; even when the same data 
set is used, different results may be produced each time the algorithm is run.  Thus, the results reported 
for ICA are shown with standard deviations that resulted from multiple trials. 

Because the numerical results reported in Table 3-2 are averaged over all of the channels, the results 
are also depicted graphically in Figs. 3-14 and 3-15, such that each technique’s performance may be seen 
at the unique noise levels.  Examination of the figures shows that ICA and wavelet denoising perform 
consistently over the varied levels.  Figure 3-14 also indicates that ICA is effective in removing the large 
independent noise contributions but is not capable of removing the smaller, base variations.  As shown by 
Fig. 3-15, the situation is reversed for wavelet denoising, which removes most of the base variance but is 
unable to remove the large spikes.  This feature is also illustrated in Table 3-2, where the overall 
fractional variance reduction is smaller for ICA because it removes the largest noise contributions.  
Another feature of interest is the correlations of the noise with itself and with its smoothed version.  It can 
be seen that the expected noise correlations for ICA are on the order of ~0.2, which could be argued as 
being significant and due to filtering process information.  This is not the case for the wavelet denoising 
routine, which produces noise correlations more than an order of magnitude smaller than ICA.  Finally, 
Table 3-2 shows that although there is a slight uncertainty associated with all of the ICA statistics, the 
uncertainty is not overwhelming.  This indicates that the ICA results are fairly repeatable.  However, 
before ICA’s smoothed estimate can be used in the uncertainty analysis of any safety critical or high-
value operation, it must first be confirmed that the uncertainty contributed by ICA’s variability is indeed 
negligible with respect to the rest of the analysis. 
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Table 3-2.  Denoising comparison for the simulated data set. 

 ICA Wavelet Actual 

Average noise mean –0.009 ± 0.004 –0.003 –0.004 

Average noise variance 2.809 ± 0.457 2.765 2.981 

Average squared error 0.278 ± 0.007 0.368 0.000 

( )( )
( )( )

1var
1

var
μ

−
μ

X
X

 0.837 ± 0.021 0.751 0.762 

( )( ,μ ε εxy est estp )  0.079 ± 0.070 0.006 0.010 

( )( ,? ,,μ ε εxy i i estp )  0.192 ± 0.045 0.013 0.049 

 

 

 

 

 

 

Fig. 3-14.  Smoothing estimates for ICA on the simulated data. 
(The true signal denotes the signal plus common process noise.) 
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Fig. 3-15.  Smoothing estimates for wavelet denoising on simulated data. 

 
Next, both techniques were used to filter actual nuclear power plant data from three redundant steam 

generator level sensors.  Although there is no definite gauge of the technique’s performance when using 
genuine data because the true signal is unknown, it is still useful to apply the techniques to a real-world 
problem.  Figures 3-16 and 3-17 show the results of this application. 

 

 

Fig. 3-16.  ICA smoothing estimates for the nuclear data set. 
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Fig. 3-17.  Wavelet denoising smoothing estimates for nuclear data. 

 
Examination of Figs. 3-16 and 3-17 shows that the ICA and wavelet denoising filtering abilities are 

consistent when applied to real data sets.  Again, ICA’s smoothed estimate contains more small variations 
but fewer spikes; whereas the wavelet denoised estimate retains some of the larger independent noise 
spikes but is successful in removing the base variations.  It is also important to note the computational 
intensity of the wavelet denoising module in the face of large data sets.  It took nearly 100 times longer 
for the wavelet denoising algorithm to execute than the ICA algorithm.  This study indicates that wavelet 
denoising’s computational burden could discourage its use.  This study also establishes that ICA’s 
requirements of time-invariant data and only a single Gaussian component are met when the technique is 
applied to nuclear data. 

The numerical results of the study using actual data are reported in Table 3-3.  Although the true 
signal and noise statistics are not known, ICA’s noise correlations are again much higher than the wavelet 
correlations, which signify that ICA may be removing a portion of the true process dynamics.  However, 
in the empirical modeling community, correlations with an absolute value less than 0.3 are considered to 
be slight. 
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Table 3-3.  Denoising comparison for the nuclear stream generator pressure channels. 

 ICA Wavelet 

Average noise mean 0.002 ± 0.049 0.001 

Average noise variance 0.002 ± 0.000 0.007 

( )( )
( )( )

1var
1

var
μ

−
μ

X
X

 0.923 ± 0.000 0.553 

( )( ),μ ε εxy est estp  0.303 ± 0.106 0.129 

( )( ),? ,,μ εxy i i estp X  0.026 ± 0.013 0.056 

 

Overall, the results indicated that both techniques are well-suited for the denoising required in the 
OLM analytical uncertainty analyses.  Both methods seem to yield a reasonable estimate of .  Again, 

the ICA or wavelet estimate of is more robust than those obtained through standard smoothing 
methods, such as local averaging and median filtering, which exclude most  common process noise from 
the estimate.  For the same reason, these methods will also yield better estimates of the bias.  Although 
wavelet denoising appears to be marginally more accurate, ICA may be favored when filtering large data 
sets because of the large computational requirements of wavelet denoising.  

2
εσ

2
εσ

A perceived drawback of ICA is its redundancy requirement.  Most nuclear plant sensors are in 
redundant groups, so obtaining the redundant data is not a problem.  However, if used on the secondary 
side or balance of plant sensors, ICA may not be applicable.   

3.4 Uncertainty Summary 

In this chapter, the general framework of model predictive uncertainty was presented.  The bias-
variance decomposition was shown.  Also, several methods for bias estimation were explained.  These 
methods computed the bias using a 95th percentile resulting in a conservative estimate, which was in 
accordance with Requirements 6 and 7 of the SER.  Next, several examples comparing the bias 
calculation methods using simulated data are presented.  These examples use data that exhibit sharp 
curvature to help illustrate the theory behind bias calculation.  However, nuclear data being considered for 
OLM are generally steady state, which means the estimated bias value will be smaller and more constant 
throughout the process.  

This chapter also discussed denoising.  ICA and wavelet denoising were highlighted as two viable 
denoising techniques.  Both of these techniques have the theoretical ability to differentiate between 
independent noise and common noise.  ICA and wavelet denoising were compared using both artificially 
simulated data and real nuclear data.  This comparison showed that both methods produce acceptable 
denoising results, which are needed for OLM uncertainty analyses.  Chapters 5 and 6 will present 
analytical and Monte Carlo-based techniques, respectively, for performing these OLM uncertainty 
analyses on the AAKR, AAMSET, and AANN models. 

 

 81



4. ANALYTIC METHODS 

 
This section will present the derivation of the analytic equations for the three empirical models 

currently available in OLM systems, specifically AANN, AAKR, and AAMSET.   

4.1 Auto-Associative Neural Networks 

Recall that an auto-associative neural network (AANN) is a parametric modeling technique 
composed of a four-layer neural network.  The layers of an AANN act to map data onto nonlinear 
components (the mapping layer), perform a nonlinear transformation on the components (the bottleneck 
layer), de-map these transformations (the de-mapping layer), and then combine these components into 
predictions (the output layer).  This network architecture is illustrated in Fig. 4-1.  In addition, the 
symbols used to represent the different artificial neurons may be seen in Fig. 4-2.  This section will not 
provide an in-depth general discussion of neural network architectures, training algorithms, or 
optimization techniques.  A number of well written texts are dedicated to this subject, one of which is 
Neural Networks: A Comprehensive Foundation by Haykin [1994]. 

 

   

1x

2x

nx

1̂x

2x̂

nx̂

Input Layer Mapping Layer Bottleneck 
Layer 

De-mapping 
Layer 

Output Layer 

Fig. 4-1.  Auto-associative neural network architecture. 
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Fig. 4-2.  Artificial neuron symbol definitions. 

 

4.1.1 Uncertainty intervals for a general nonlinear regression model 

This section will present a modified form of the derivation presented by Rasmussen [2003] for 
confidence and prediction interval estimation for general nonlinear regression models.  Consider the 
following nonlinear system being modeled: 

 

  (4.1.1.1) ( )X ,θ ,= +i iY f εi

⎤⎦p

)

 
where  
 

Yi is the measured response variable; 

,1 ,2 ,X ⎡= ⎣ Li i i iX X X  are the p predictor variables of Yi, 

è are the model parameters, 

f(Xi,è) is the true value of the response variable for a given Xi and θ , 

( 20, εε ≈ σi N  is normally distributed random noise with a mean 0 and variance ,  2
εσ

I = 1,2,…,ntrn are the indices of the training observations with ntrn being the number of training 
observations. 
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The sum of the squared errors is thus given by: 

 ( ) ( ) 2

1
X , .

=

= ⎡ − ⎤⎣ ⎦∑è
mn

i i
i

S Y f è  (4.1.1.2) 

 
At this point, is defined as the set of model parameters that minimizes , P is defined as 

the number of model parameters or the length of , and x designates a single query observation. 

ˆ=θ θ ( )θS

θ̂

The above function may now be approximated by a first-order Taylor polynomial of θ about : θ̂
 

 ( ) ( ) ( ) ( )0
1

,ˆ, ,
=

ˆ .
⎡ ⎤⎛ ⎞∂

≈ + −⎢ ⎥⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
∑

x θ
x θ x θ θ

θ

P

k k
k k

f
f f θ  (4.1.1.3) 

 
Using the definition of a Jacobian gradient vector, which is the transpose of the gradient vector f, 

 

 
( ) ( ) ( )

1 2

ˆ ˆ ˆx, x, x,
f

⎡ ⎤∂ ∂ ∂
⎢=

∂ ∂ ∂⎢ ⎥
⎣ ⎦

è è è

è è è
LT

p

f f f
.⎥

ˆ è

)

.

 (4.1.1.4) 

 
The following equation results: 

 
  (4.1.1.5) ( ) ( ) ( )ˆx, x, f .≈ + −è è èTf f

 
The variance of , is given by Dybowski [1997] to be ( ˆx,θf

 
  (4.1.1.6) ( )ˆx, f S f .⎡ ⎤θ =⎣ ⎦

TVar f

 
The variance covariance matrix, S, may be estimated in several ways using an estimated Hessian 

matrix [Dybowski 1997, Tibshirani 1996], but since estimating the Hessian is usually difficult, if indeed 
possible, the following estimate will be used [Chryssolouris 1996]: 

 
 

12S F F
−

⎡ ⎤= ⎣ ⎦
Ts  (4.1.1.7) 

 
where  

F is an ntrn × P matrix of partial derivatives of with respect to the model parameters 

determined from the least squares minimization: 
( ˆ,X θif )

that is, 
( )

,

ˆ,∂
=

∂

X θ
F

θ
i

i j
j

f
;  
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( ) 2
2

1

1 ˆx ,
=

⎡= − θ⎣∑
trnn

i i
itrn

s Y f
n

⎤
⎦

ε

ˆ

)

is an estimate of the noise variance [Tibshirani 1996]. 

 
Now consider the nonlinear model for a new query observation x: 

 
  (4.1.1.8) ( )x,θ .= +y f
 

The model’s estimate of the response is given by: 

 
  (4.1.1.9) ( )ˆˆ x,θ .=y f

 
Calculating the difference between the estimate and the measured response: 

 
  (4.1.1.10) ( ) ( )ˆˆ x,θ x,θ .− = + ε −y y f f

 
Recall that the first-order expansion of the model’s estimate of θ about is given by: θ̂

 
  (4.1.1.11) ( ) ( ) ( )ˆx,θ x,θ f θ θ .≈ + −Tf f

 
Then the above difference equation may be approximated by: 

 
  ( ) ( ) ( )ˆˆ x,θ x,θ f θ-θ ,− ≈ + ε − − Ty y f f

            (4.1.1.12) 

     ( )ˆˆ f .− ≈ ε = θ − θTy y

 
It is assumed that  and  are independent.  This results in the following variance 

decomposition: 

ε ( ˆ −f θ θT

 
 [ ] ( )ˆˆ f θ θ ,⎡ ⎤− = ε − −⎣ ⎦

TVar y y Var  

  (4.1.1.13) 
 [ ] [ ] ( )ˆˆ f θ θ .⎡ ⎤− = ε + −⎣ ⎦

TVar y y Var Var  

 
Recall that  (i.e., normally distributed with a mean of 0 and variance of ) and that 

the variance of the prediction is dependent on the difference between the optimum set of model 
parameters and the current set of model parameters θ that is assumed to be normally distributed, mainly 

.  The variance of the difference now becomes 

2(0, )εε ≈ σN 2
εσ

θ̂

( )ˆ (0, )− ≈θ θ SN
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 [ ] 2ˆ f S f .ε− ≈ σ + TVar y y  (4.1.1.14) 
 

Using the estimate of S defined by Chryssolouris [1996]:  

 
  (4.1.1.15) [ ] 12 2ˆ f F F f

−

ε ⎡ ⎤− ≈ σ + ⎣ ⎦
T TVar y y s ,

.

 
recall that the variance, , is estimated by the mean squared training error , so 2

εσ 2s

 

  (4.1.1.16) [ ] ( )12 2ˆ f F F f
−

⎡ ⎤− ≈ + ⎣ ⎦
T TVar y y s s

 
The Student’s t-distribution is then estimated by: 

 

 
[ ] 1

ˆ ˆ
.

ˆ 1
− −

− −≈ ≈
− ⎡ ⎤+ ⎣ ⎦f F F f

trnn p
T T

y y y yt
Var y y s

 (4.1.1.17) 

 
Here, is the number of degrees of freedom for the distribution, with ntrn being the number of 

training observations and p being the number of variables used to estimate y. 
−trnn p

Therefore, the associated prediction and its corresponding prediction interval for a theoretical 
coverage of 1  is found to be: α−
 

 
1

, /2ˆ( )  1 .
−

− α ⎡ ⎤± + ⎣ ⎦f F F f
trn

T T
n pE y t s  (4.1.1.18) 

 
Before continuing, recall that Eq. (4.1.1.18) is for the prediction interval of an unbiased model.  To 

construct a proper prediction interval, as described in Sect. 3.2.2 a bias term must be added as follows: 

 

 
12 2 2

, /2ˆ  
−

− α ⎡ ⎤± + +⎣ ⎦f F F f
trn

T T
n py t s s Bias .  (4.1.1.19) 

 
Because alternative methods exist for estimating the variance of the noise (see Sect. 3.4.), a more 

generic term for the estimated noise variance, , may be introduced:   2ˆεσ

 

 
12 2 2

, /2ˆ ˆ ˆ  
−

− α ε ε ⎡ ⎤± σ + σ +⎣ ⎦f F F f
trn

T T
n py t Bias .  (4.1.1.20) 

 
Reexamination of Eqs. (3.2.2.4) and (3.2.2.5) shows that the prediction interval and confidence 

interval are the same except for the fact that the confidence interval does not contain a noise term .  

Thus, a confidence interval can be derived from Eq. (4.1.1.19) by neglecting the estimated noise variance, 
2 .  Thus, a confidence interval is constructed with Eq. (4.1.1.20): 

( )2
εσ

ˆεσ
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12

, /2ˆ ˆ( )   .
−

− α ε ⎡ ⎤± σ +⎣ ⎦f F F f
trn

T T
n p

2E y t Bias  (4.1.1.21) 

 
The terms of Eqs. (4.1.1.20) and (4.1.1.21) will now be derived for an AANN. 

4.1.2 Uncertainty intervals for auto-associative neural networks 

This section will use the approach developed for a general nonlinear regression model to estimate the 
uncertainty for the predictions made by an AANN.  The discussion presented below follows the general 
approach presented by Rasmussen [2003] for an inferential artificial neural network (IANN), where the 
IANN uses p variables to estimate a single response variable.  The difference in the following discussion 
is the extension of this approach to each of the AANN’s predicted variables.  In other words, the AANN 
is broken into p IANNs where the p predictor variables are used to estimate the ith response variable for 

{ }1,2, ,= Ki p .  

First, recall the following expression for the 1 prediction interval of a general, un-biased 
nonlinear regression model: 

− α

 

 
1

, /2ˆ 1
−

− α ⎡ ⎤± + ⎣ ⎦f F F f
trn

T T
n py t s .  (4.1.2.1) 

 
The uncertainty of the estimate with a certainty of 1  is given by: − α

 

 
1

, /2 1
−

− α ⎡ ⎤+ ⎣ ⎦f F F f
trn

T T
n pt s .  (4.1.2.2) 

 
Recall that F is defined as the ntrn × P Jacobian matrix of the model’s nonlinear function with 

respect to each of the modeling parameters estimated in the training process.  Here, ntrn is the number of 
training observations, and P is the number of parameters in the model.  Also, recall that f is the 1 × P 
Jacobian matrix of the model’s nonlinear function with respect to its parameters for a query observation x; 
that is, 

 

 
( ) ( ) ( )

1 2

ˆ ˆ ˆ, , ,
... .

⎡ ⎤∂ ∂ ∂
⎢=
⎢ ∂ ∂ ∂
⎣ ⎦

x θ x θ x θ
f

θ θ θ
T

P

f f f
⎥
⎥

 (4.1.2.3) 

 
The nominal response uncertainty estimate is given by  

 

 ( )  2
2

1

1 ˆ,
=

.⎡ ⎤= −⎣ ⎦∑ X θ
trnn

i i
itrn

s Y f
n

 (4.1.2.4) 

 
At first glance, it is not difficult to recognize the terms that require in-depth consideration, namely F 

and f.  The majority of this section will address the derivation of these two quantities and will extend their 
equations to an AANN. 

The architecture of a general AANN (Fig. 4-3) can be treated as a set of isolated, multilayer IANNs.  
One such isolation is shown by the green lines in Fig. 4-3, neglecting the black lines which make the 
network auto-associative.  In this diagram each of the neuron bias values has been omitted for the sake of 
simplicity. 
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Fig. 4-3.  Example decomposition  AANN into multilayer IANN. 

 
The derivation w tained within the 

ANN architecture. 

ut neurons (i.e., number of variables being monitored by the AANN), nm as the 
num  of 

 Number of biases Number of weights 

 of

ill now be presented with respect to one such isolated IANN con
A

The first step is the determination of the dimensions of F for an isolated IANN.  Define p as the 
number of input/outp

ber of mapping/demapping neurons, and nb as the number of bottleneck neurons.  The breakdown
the number of variables for each isolated IANN’s layer connections may be seen in Table 4-1. 

 
Table 4-1.  Number of parameters in multilayer IANN 

Input layer → p x nm  mapping layer nm 

Mapping layer → ottleneck layer  b nb nm x nb 
Bot er tleneck layer → demapping lay nm nb x nm 

Demapping layer → output layer 1 nm  
 

Com

 
)1

.
3 2 1

+ + × + + × + +

= + + × + × +

m b m b m m b m

m b m m b

n n n n n n n

P n n p n n n
 (4.1.2.5) 

Therefore, the Jacobian of the IANN for ntrn training observations will have dimensions ntrn × P and 
 presented below, in terms of the generic  parameters, where i is the training observation number, 

and 

bining these contributions: 

(  = + ×mP n p n
 

) ( ) ( ) (

( ) ( )
 

is ,θi j

j is the model parameter number: 

 

 88



 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1

1,1 1,2 1,

2 2 2

2,1 2,2 2,

,1 ,2 , .

ˆ ˆ ˆ, , ,

ˆ ˆ ˆ, , ,
.

ˆ ˆ, , ,

⎡ ⎤∂ ∂ ∂
⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥= ∂ ∂ ∂⎢ ⎥
⎢
⎢
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎣ ⎦

X θ X θ X θ

θ θ θ

X θ X θ X θ
F θ θ θ

X θ X θ X θ

θ θ θ

L

L

M M O M

L
trn trn trn
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ˆ

⎥
⎥

 (4.1.2.6) 

 
Now the question arises: how are these generic parameters related to the weight and bias values of an 

N

, training 
obse

 

IA N?  Note that the calculation of the above Jacobian is not a new concept, but is calculated for use in 
the Levenberg-Marquardt neural network training algorithms [Demuth and Beale 2004].  

First, a generic weight and bias Jacobian is defined for the L layer of a neural network
rvation i, and k response variable or output neuron. 

 

( ) ( ) ( )
1 2

ˆ ˆˆ ˆ ˆ, , ,
.

⎡ ⎤∂ ∂ ∂
⎢ ⎥=
⎢ ⎥∂ ∂ ∂
⎣ ⎦

X θ X θ X θ
W

w w w
L

L

k i k i k iL
i L L L

n

x x x ˆ
 (4.1.2.7) 

 
here W

Ln and 1−Ln  are the number of neurons in layer L and L – 1, respectively; 

is the com
 

 ⎣ ⎦L

θ̂ plete set of trained network parameters for the IANN; 

11, 2, ,−
⎡ ⎤= LL L L Lw j j j n j j in layer L to all of the 

neurons in the previous laye

  

w w w are the connection weights from neuron 

r, i.e., L – 1;  

( ) ( ) ( ) ( )
11, 2, ,

ˆˆ ˆ ,

−

⎤∂ ∂
⎢ ⎥=
⎢ ⎥∂ ∂ ∂ ∂
⎣ ⎦

X θ

w
L

L

k i
L L L L
k k k n k

x x

w w w
 is the partial derivative of the IANN 

prediction for the kth response variable with respect to each of the 
 

 

ˆ ˆ ˆˆ ˆ, , ,⎡∂ ∂X θ X θ X θk i k i k ix x

input weights; 

 the connection weight of neuron i in layer L – 1 to neuron j in layer L. ,
L
i jw

( ) ( ) ( )
1 2

ˆ ˆ ˆˆ ˆ ˆ, , ,
,

⎡ ⎤∂ ∂ ∂
⎢ ⎥=
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⎣

X θ X θ X θ
b L

L

k i k i k iL
i L L L

n

x x x

b b b
 

⎦
 (4.1.2.8) 

here  are the bias values for the 
 

 1 2⎡ ⎤= ⎣ ⎦b L
L

L L L L
i nb b b Lnw neurons is layer L, and 

 L
jb is the bias of neuron j in layer L. 
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With these definitions, F may be written as: 

 

  (4.1.2.9) 

1 1 2 2 4 4
1 1 1 1 1 1
1 1 2 2 4 4
2 2 2 2 2 2

1 1 2 2 4 4

.

⎡ ⎤
⎢ ⎥
⎢= ⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

W b W b W b
W b W b W b

F

W b W b W b

L

L

M M M M M M

L
trn trn trn trn trn trnn n n n n n

⎥
⎥

 
Now that the general structure of the Jacobian has been presented, the derivation of its components 

will be discussed.  The foundation of this analysis is taken from the following representation of a single 
neuron of the isolated IANN, described earlier (Fig. 4-4). 

 

 

Fig. 4-4.  Illustration of neuron K in the L layer of an isolated IANN. 

 
Here L

KI is the internal activation of the neuron, and L
KO  is the neuron’s output.  Therefore, the 

determination of the Jacobian is accomplished by differentiating the network’s output with respect to all 
of the network weight and bias values. 

To start, the output of the kth neuron in the output layer will be examined.  Recall that the transfer 
functions of the output neurons are linear and that for this piecewise consideration of the AANN, only one 
output neuron is present.  Because the internal activation is equal to the output for a linear neuron, the 
neuron’s output may be written as follows: 

 

  (4.1.2.10) ( )4 4 3
,

1

ˆ .
=

= = ⋅ +∑
mn

k k i k i k
i

x O w O b4
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Computing the partial derivatives with respect to the neuron’s input weights, where  
and nm is the number of neurons in the mapping and demapping layer: 

1,2, ,= K mi n
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 (4.1.2.11) 

 
Computing the partial derivatives with respect to the neuron’s bias value: 
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 (4.1.2.12) 

 
Moving to the third layer, the output of the mth neuron is given by the following equation, where 

, and nb is the number of neurons in the bottleneck layer: 1,2, ,= K bi
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For this layer, the differentiations are slightly more complicated and involve the decomposition of 

3
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∂
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 and 3
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x
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 using the chain rule as follows: 
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Here,  refers to the mth neuron’s contribution to the internal activation of the kth output neuron, 

that is, . 

4
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Combining these partial derivatives to find the final form of the Jacobian entries for the third layer 

are found to be: 
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 (4.1.2.18) 

 
The results obtained by moving to the second and first layer are simply equivalent to those for the 

third with the addition of relevant terms in the decomposition of the partial derivatives.  For the sake of 
brevity, the results for each of the layers, for a single output neuron (k) and single training observation, 
are listed in Table 4-2. 
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Table 4-2.  Jacobian calculations for each layer of isolated IANN 
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4—Output Layer 3
IO  1 

 
These formulas are used to calculate the Jacobian for each of the process variables.  For example, if 

an AANN uses p variables to predict the corrected p variables, then there would be a total of p individual 
Jacobian matrices of dimension ntrn × P. 

For the calculation of Jacobian matrix (f), the above sequence of calculations is used for the new 
query observation only, while the calculation of the matrix of partial derivatives (F) is accomplished by 
running each of the training observations through the sequence.  Therefore, the dimensions of f are 
ntrn × 1.  

The resulting matrices may then be used in the below equation to determine the prediction intervals 
for each of the output variables of the AANN.   
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Additionally, Eq. (4.1.2.19) may be simplified by assuming that a sufficient number of training 

observations have been used to train the AANN, such that the asymptotic t-value of 2 for a 95% 
confidence level may be used.  This approximation results in the final equation for the prediction interval 
of an AANN: 
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Again, the confidence interval can be constructed from the prediction interval by neglecting the 

stand-alone term beneath the square root:  2ˆεσ
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4.2 Memory-Based Modeling Techniques 

To derive the uncertainty equations for AAKR and AAMSET, the analytic equations for estimating 
model variance must be developed.  Recall that AAKR and AAMSET perform a weighted average on a 
set of memory vectors.  Therefore, the variance propagation equations for both modeling techniques are 
very similar to that of a simple weighted average. 

To begin, consider the following equation for a weighted sum, where wi are the weights: 
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The expected value and variance of the weighted sum are given by the following two equations 
[Morgan and Henrion 1990]: 
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If the values of X are assumed to be independent, the equation for variance becomes 

  

  (4.2.4) ( ) ( )2

1
.

=

≈∑Y
n

i
i

Var w Var

 
This methodology may now be applied to a weighted average.  Using the same notation as the 

weighted sum, the weighted average of X may be written as 
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Because the sum of the weights is a constant for a single weighted average, the variance is estimated 

by 
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This equation will now be adapted to construct the uncertainty intervals for AAKR and AAMSET.  

Recall that the fundamental operation used by AAKR to estimate parameters is the weighted 
average. 
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where 
  is a 1 × p matrix of estimates of x, x̂
 w is a 1 × nm matrix of weights, 
 X is a nm × p matrix of memory vectors,  

  where wi is the weight of the ith memory vector. 
1=

=∑
mn

i
i

a w

 
For AAKR, w is determined by evaluating the Gaussian kernel of bandwidth h with the distance d. 
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Using these definitions, the variance of the uncertainty for AAKR is found to be the following, 

where the noise variance is denoted by : 2ˆεσ
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The above equation may now be rewritten in a more compact form in terms of the hat matrix h: 
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 (4.2.10) 

 
where  

 T 1 2⎡ ⎤
= ⎢ ⎥
⎣ ⎦

h L mnww w
a a a

 is the hat matrix,  

  is a 1 × p matrix of variance estimates of the noise on x. 2ˆεσ
 

Alternatively, in AAMSET, w is determined by evaluating: 

 
  (4.2.11) T .= ⊗w x X
 

Unlike AAKR, the AAMSET weights are normalized by multiplying wT by the inverse of the 
normalizing matrix N.  Therefore, the hat matrix, h, for AAMSET is given by: 

 
  (4.2.12) T T 1 .−=h w N
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Finally, this definition for h may be used in Eq. (4.2.10) to estimate the prediction variance of an 
AAM

stimates for AAKR and AAMSET may now be incorporated into the general 
pred

SET model. 

The variance e
iction interval equation. 

 
2 T 2 2

, 2ˆ ˆ ˆ .− α± σ + σ +x h h
mn p ε εt  B ias  (4.2.13) 

Additionally, the above equation may be simplified by assuming that a sufficient number of memory 
vect

 

 

 

ors have been used in the AAKR and AAMSET models, such that the asymptotic t-value of 2 for a 
95% confidence level may be used.  This approximation results in the final equation for constructing the
prediction intervals for AAKR and AAMSET models:   

 

2 T 2 2ˆ ˆ ˆ2 .± σ + σ +x h hε ε Bias  (4.2.14) 

The confidence interval for AAKR and AAMSET models is then the following: 

 

 

T 2 2ˆ ˆ( ) 2 .± σ +x h h εE  Bias  (4.2.15) 

4.3 Analytic Summary 

In this section, the analytic equations for determining the uncertainty of the AANN, AAKR, and 
AAM

many 

ds.  

 

SET models were derived.  From these equations, prediction and confidence intervals can be 
constructed for each modeling technique.  Although these analytic equations are complex and have 
assumptions, they are generally regarded to give a robust estimate of model uncertainty.  In the next 
section, Monte Carlo-based uncertainty analyses are presented as an alternative to the analytic metho
In comparison to the analytic analyses, the Monte Carlo techniques are more straightforward, have fewer 
assumptions, and are generally easier to understand.  Still, due to the computational intensity of the 
Monte Carlo techniques, the analytic methods are often the only practical means of quantifying a model’s 
uncertainty. In subsequent applications it is shown that the analytical and Monte Carlo uncertainty 
prediction techniques produce similar results. 
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5. MONTE CARLO METHODS 

Monte Carlo analysis gets its name from the city/state of Monte Carlo, Monaco, which is famous for 
its casinos.  The games in the casinos, such as roulette, slot machines, and dice, all exhibit random 
behavior.  The random behavior in these games is similar to how Monte Carlo methods select the variable 
values used to construct a model.  In general, Monte Carlo methods can be described as simulation 
methods that use sequences of random numbers to perform statistical simulations.  In Monte Carlo 
analysis, rather than making a single prediction based on the “best guess” for each uncertain variable, 
multiple predictions are made using different values for the uncertain variable, where each possible value 
for each uncertain variable (one that has a range of possible values) is defined with a probability 
distribution.  The uncertain variables in OLM applications are the training data.  The values are uncertain 
due to the irreducible error that is modeled by a distribution.  The basic method is to estimate the noise-
free variables and their associated noise distributions.  Samples (training data) are then selected, and 
models are constructed.  The uncertainty in the model predictions are determined by characterizing the 
variations in the predictions caused by the random nature of the training data.  In general, Monte Carlo 
methods provide reasonably accurate descriptions of possible model outcomes.  Monte Carlo analyses are 
often used in the nuclear industry [Rasmussen 2002].  

Monte Carlo-based uncertainty estimation methods applicable to OLM have two primary sampling 
frameworks: one is based upon a wavelet denoising with Latin hypercube sampling (LHS), developed at 
Argonne National Laboratory [Zavaljevski et al. 2004], and the other is a direct bootstrap, developed at 
the University of Tennessee [Rasmussen 2003].   

The general process used by both Monte Carlo uncertainty estimation algorithms may be described 
as follows:  (1) create a training set by sampling from the original data (algorithm dependent); (2) build a 
prototype model using the training set; (3) simulate the model with an independent test or validation set; 
(4) store the parameter estimates in simulation memory; and (5) repeat the process, starting at (1), until 
the specified number of iterations have run.  Following this iterative cycle, the simulation memory is used 
to develop an estimate of the model’s uncertainty by evaluating the prediction variance and estimating the 
model’s bias according to the methods described in Chap. 4.  Figure 5-1 depicts this process. 

 

Fig. 5-1.  Process diagram for Monte Carlo uncertainty estimation. 
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5.1 Direct Bootstrap Sampling 

The direct bootstrap sampling algorithm is a simplified variation on traditional Monte Carlo methods 
in that it iteratively samples and tests a set of data, as is shown in Fig. 5-2.  The simplification lies in the 
method of sampling, which is performed by randomly selecting observations directly from the training 
data with replacement (i.e., an observation may be selected more than once), rather than sampling data 
with noise simulated from a probability distribution as in most Monte Carlo techniques [Efron and 
Tibshirani 1993].  From each resultant sampled data set, a new model is built.  From this collection of 
models, the model variation and the average model bias are estimated.  Although this approach has a 
simple architecture, it has been shown by Tibshirani [1996] that it performs comparable to asymptotic 
uncertainty estimation techniques for neural networks. 

 

 

Fig. 5-2.  Process diagram for bootstrap uncertainty estimation. 

 

5.2 Latin Hypercube Sampling 

The Latin hypercube sampling (LHS) is a method used to reduce the computational burden of 
conventional MC techniques such as the bootstrap.  Rather than randomly sampling from a distribution, 
LHS techniques sample in a “smart” way to cover the distribution with a fewer number of samples.   

MIron [2001] applied wavelet filtering to estimate the “true” process values. A diagram of this 
process is presented in Fig. 5-3.  The “true” values are then subtracted from the data, providing an 
estimate of the noise which is then modeled with a distribution.  This noise distribution is then sampled 
via LHS to construct prototype training sets [Zavaljevski et al. 2004].  From this preliminary description, 
it can be seen that this sampling technique is fundamentally composed of two processes: estimating and 
sampling a noise distribution.   
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Fig. 5-3.  Process diagram LHS with wavelet denoising. 

 
Because the focus of this section is to discuss LHS methodology, the details of wavelet denoising 

will not be discussed at this time, and the reader is referred to Sect. 3.4.2 of this document, where it is 
discussed in more detail. 

LHS is a stratified sampling technique that is used to sample a distribution evenly [Helton 2004].  
This is accomplished by segmenting the distribution into a number of nonoverlapping intervals, 
commonly termed “bins,” with each bin having an equal probability.  Each probability “bin” has a 
restricted range of possible distribution values [Wyss and Jorgensen 1998].  Figure 5-4 shows a normal 
distribution divided into 10 probability bins, with each bin having a probability of 0.1.  Thus, when LHS 
sampling is used, random values are selected from each bin with equal frequency.  Typically, the 
distribution is segmented into N bins, each having a probability of 1/N, where N is the number of 
observations in the training data.   

 

 

Fig. 5-4.  Normal distribution segmented for LHS sampling. 

 
As seen in Fig. 5-5, the result of the LHS is that the noise distribution is sampled evenly, whereas 

traditional or random methods result in a sampling that closely mimics the original distribution.  Thus, in 
the random methods, the tails of the distribution are not factored in to the final result as they should be.  
This fact is especially true for highly skewed distributions, or ones with long tails.  When using basic 
sampling methods, it is necessary to conduct many trials to ensure that the unlikely extremities, which 
have a low probability of occurring and are at the tails of the distribution, are taken into account.  Because 
the full range of the distribution is sampled more evenly and consistently with LHS, it requires fewer 
trials than the traditional Monte Carlo and bootstrap methods for similar accuracy. 
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Fig. 5-5.  Comparison of basic distribution sampling and LHS. 

 
Although LHS may converge to the true uncertainty value more quickly, it does have its drawbacks.  

First, the distribution of the data has to be accurately quantified.  Miron [2001] addresses the issues and 
presents several statistical tests for determining the distribution of a given data set.  Additionally, extra 
memory is required because of the stratification that must be retained throughout the sampling. 

5.3 Comparison of Latin Hypercube Sampling and Direct Bootstrap Sampling 

In this section, variance predictions are determined using both the bootstrap and LHS.  The goal is to 
determine how many runs are needed to provide a stable estimate of a model’s variance.  This is 
performed by plotting the model’s predicted variance against the number of runs.  The model variance 
(i.e., the variability between the many models constructed with the data and not the noise in the data) is 
the parameter of concern. 

The variance was calculated for an incrementally increasing number of bootstrap replications.  
Figure 5-6 presents the simulated nuclear power plant data that is to be modeled.  In this example, 
Channel 1 contains the highest contribution of independent noise while Channel 3 has the least.  The data 
set contains 600 observations. 
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Fig. 5-6.  Simulated channel data containing both independent and common noise. 

 
Bootstrap simulations were carried out using these data with varied bootstrap numbers, ranging from 

n = 10 to 1000, with a step size of 10.  Rather than keeping the previous runs and simply appending 
additional ones on to them to calculate the statistic for a larger number of samples, an entirely new set of 
bootstrap runs was performed to provide independent samples.  Figure 5-7 shows the results.  Each of the 
n bootstrap runs results in a new model, which is used to make predictions on a test data set.  The model 
variance is then calculated for each test observation, which is then averaged to obtain a single variance 
value for each channel. 
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Fig. 5-7.  Variance vs number of bootstrap runs. 

 
Figure 5-7 indicates that the bootstrap variance prediction is somewhat unstable and probably 

unrepeatable with fewer than 300 simulations.  Even with 1000 runs, the results have not entirely leveled 
off.  Thus, the acceptability of the bootstrap prediction at this point depends on the level of confidence 
and accuracy that the estimate must have, which is dictated by its specific application.  The figure also 
shows that, as expected, the noisier channel (Channel 1) requires more bootstrap runs before the estimate 
of the variance stabilizes.   

An identical study was repeated using LHS rather than sampling the data directly using bootstrap.  
Using LHS requires denoising the signal and modeling the noise distribution so that it can be sampled.  
For this example, the noise probability distribution was modeled as a normal distribution.  The result of 
this example is shown in Fig. 5-8.   
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Fig. 5-8.  Variance vs number of LHS runs. 

 
As expected, LHS reduced the number of runs necessary to stabilize the Monte Carlo simulation.  

When the noise distribution is easily determined, LHS proves to be quick, simple, and easy to implement.  
However, the computation effort and oversight necessary for modeling the noise distributions may result 
in LHS being more time-consuming; this is especially true if the noise distribution does not fit a normal 
distribution.  In comparison, the bootstrap method is always relatively straightforward.  Thus, for many 
OLM uncertainty analyses, the bootstrap direct sampling method may be preferred over LHS.   

5.4 Equations for Uncertainty 

To this point, the discussion has focused on how historical data are sampled with only a brief 
discussion of variance computation.  This section will present equations used to combine the Monte Carlo 
samples into an estimate of model uncertainty. 

Suppose a set of training data (X) exists, with ntrn observations of p variables, where Xi,j is the ith 
training observation of variable j: 
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To construct a prototype model, ntrn samples are selected from X with replacement, where the 

samples are either used to train an AANN or are used to select exemplar vectors for the memory matrix of 
an AAKR or AAMSET model.  For the direct bootstrap technique, the sample would be ntrn observations 
that were randomly selected from X.  For LHS, the sample would be the selected instances of the sum of 
the “true” values of X and an LHS sample of the noise.  X* is defined as the Monte Carlo sample of X 
used to create a prototype model and may be written as 
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 (5.4.2) 

 
Recall that for the Monte Carlo based uncertainty estimation methods, the prototype models are 

tested with a second independent data set.  If this test set contains nq observations, it may be written as 
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For an auto-associative empirical model, the predictions for a prototype model are estimates of x and 

therefore are written as 
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The number of prototype models created and tested is defined as N, so there will be N versions of 
.  To distinguish between these values, is defined as the prediction of the kth prototype model for x, 

where  is the ith observation of the jth variable of . 

*x̂ *x̂k

*
,ˆ k

i jx *x̂k

The expected value for the prediction of the ith observation of the jth variable is simply defined as 
the average of the N model predictions. 
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Therefore, the expected prediction of x can be written as 
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In a similar fashion, the variance of the ith observation of the jth variable is defined as 
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Therefore, the variance of the model predictions can be written as 
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The variance for each of the p variables is conservatively selected to be the 95th percentile value.  

This value is calculated by arranging the nq variance estimates in ascending order and selecting the 95th 
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percentile largest value. This variance estimate is now incorporated into the general prediction interval 
equation [Eq. (4.2.2.6)] as follows: 

 

 ( )2
, 2ˆ ˆ ˆ .− α± σ + +x x

qn p εt Var B 2ias  (5.4.9) 

 
Here,  is an estimate of the noise variance and the bias is derived according to methods described 

earlier. 

2ˆεσ

Because the uncertainty found by the Monte Carlo algorithms requires many iterations, it is not 
practical for near-real-time use.  Therefore, a single point uncertainty is calculated from the Monte Carlo 
estimate for a set of unfaulted test data.  This single point estimate is generally defined to be the 95th 
percentile Monte Carlo uncertainty estimate for the test data.  Furthermore, since Monte Carlo techniques 
require the construction of many prototype models, the large computational burdens of neural network 
training generally restrict the use of AANNs to applications where small network architectures may be 
used. 

5.5 Monte Carlo Summary 

In this chapter, the general process used by Monte Carlo uncertainty estimation methods was 
explained.  The chapter also examined two Monte Carlo techniques commonly used in OLM: the direct 
bootstrap and the LHS method.  Overall, Monte Carlo techniques are more intuitive than the analytic 
methods and are also generally regarded as more accurate [Rasmussen 2003].  However, the accuracy of 
these methods depends upon the number of simulations performed.  This requirement of a large number 
of simulations, and the resulting computational burden, could prohibit the use of Monte Carlo techniques 
in certain OLM applications.  The following section compares the analytic and Monte Carlo techniques 
using both simulated and actual nuclear plant data. 
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6. COMPARISON OF UNCERTAINTY ESTIMATION METHODS 

This chapter will use both artificially generated and actual nuclear plant data to compare the 
uncertainty estimation methods described in Chaps. 4 and 5.  First, the methods used to estimate the noise 
variance and model bias will be discussed.  Next, the analytic and Monte Carlo methodologies will be 
applied to the artificially generated and actual plant data.  Finally, the results will be synthesized to 
provide a holistic perspective of each method’s advantages and drawbacks, as well as providing 
guidelines for proper implementation. 

Recall that the general equation for the confidence interval (CI) of an auto-associative model (i.e., x 
is estimated by ) for a 95% confidence level is given by: x̂

 

 ( ) ( ) 2ˆ ˆ2 ,± +x xf Var Bias  (6.1) 
 
where 

( )f̂ x  is an estimate of the true values of x, 

( )ˆVar x  is the model prediction variance, 
 Bias is the model prediction bias. 
 

For a single query observation, the dimensions of x, ( )f̂ x , , and Bias are 1 × p, with p 
being the number of variables or sensors being modeled.  This equation will serve as a foundation for the 
examples discussed in this chapter. 

( )ˆVar x

Next, the CI for the residuals or error is given by Eq. (6.2). 

 

 ( ) ( ) 2ˆ ˆ2 ,± +f ε Var x Bias  (6.2) 
 
where 

( )f̂ ε  is an estimate of the true, noise-free residuals with ; ˆ= −ε x x

( )x̂Var  is the variance of the model’s predictions; 
 Bias is the model’s prediction bias. 

6.1 Noise Variance Estimation 

For this example, the variance of the noise will be estimated by applying the wavelet denoising 
methodology described in Sect. 4.4 and illustrated by the following equations. 

 
  (6.1.1) ( )ˆ ,= −ε X Xi i if
 
where 

ε i is an estimate of the noise on the ith training observation, Xi; 

(ˆ
if X )  is an estimate of the “true” value for the ith training observation, Xi, found by 

 applying the wavelet denoising algorithm. 
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For this example, the variance of the noise is assumed to be heteroscadastic, or constant, for the p 
variables (i.e.,  is an 1 × p matrix of variance estimates): 2ˆ εσ

 

 ( ) 22

1

1ˆ .
1ε

=

⎡ ⎤σ = −⎣ ⎦− ∑ ε ε
trnn

i
trn i

E
n

 (6.1.2) 

 
where 

ntrn is the number of training observations; 

( )
1

1

=

= ∑ε
trnn

i
trn i

E
n

ε  is the estimated noise’s expected value, which is most often found to be zero or 

near zero for drift free data, ;  ( ) 0≈εE
2ˆ εσ  is an estimate of the variance of the noise on X. 

6.2 Bias Estimation 

For these examples, the model prediction bias is estimated by applying the bias-variance 
decomposition equation discussed in Sects. 4.2.1 and 4.3.2.  The MSE is given by the following equation, 
where Xtst is an ntst × p matrix of unfaulted test data and ntst is the number of test observations: 

 

 ( ) (  2

, ,
1

1ˆ ˆ ,
=

= −∑X X X
tstn

tst tst i tst i
tst i

MSE
n )  (6.2.1) 

 
where  and  are the ith test observation and its estimated value, respectively. ,Xtst i ,X̂tst i

Notice that the MSE has dimensions 1 × p.  Furthermore, under the assumption of heteroscadastic 
variance,  has dimensions 1 × p.  If the analytic equations are used to estimate the model prediction 
variance, then the dimensions of the estimated variances have the same dimensions as Xtst, specifically 
ntst × p.  An ntst × 1 matrix of ones, A, is introduced at this point to copy the p MSE and error variance 

values for each of the ntst observations.  The model’s squared bias, 

2ˆ εσ

( )  2ˆ⎡ ⎤
⎣ ⎦XtstBias , is found as follows: 

 

  (6.2.2) ( ) ( ) ( ) 2
2ˆ ˆ ˆ ˆ ε

⎡ ⎤ = ⋅ − − ⋅σ⎣ ⎦X A X X Atst tst tstBias MSE Var .

 
If the model uncertainty is estimated according to a Monte Carlo resampling technique, then the 

estimated variance is the mean prototype model variance and has dimensions 1 × p.  In this case, A must 
also be multiplied by the variance term. 

For this example it is assumed that the model bias is constant for each variable and may be 
approximated by its expected value.  Additionally, if the expected squared bias is found to be negative 
(i.e., the sum model prediction variance and estimated noise variance is larger than the test MSE), then it 
is set to zero.  These assumptions give rise to the final equation that estimates the model’s bias in the form 
of a 1 × p matrix, Bias: 
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 ( ) ( ) 2  2ˆ ˆif   0
,

0 otherwise                       

⎧ ⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ≥⎪ ⎜ ⎟ ⎜⎣ ⎦ ⎣ ⎦= ⎨ ⎝ ⎠ ⎝
⎪
⎩

X Xtst tstE Bias E Bias
Bias ⎟

⎠  (6.2.3) 

 
where 

( ) ( ) 2  

,
1

1ˆ  
=

⎛ ⎞⎡ ⎤ ⎡=⎜ ⎟⎣ ⎦ ⎣⎝ ⎠
∑X

tstn

tst i tst
tst i

E Bias Bias
n

2ˆ ⎤
⎦X

⎤
⎦

is the expected squared model bias,  

( )  2

,
ˆ  ⎡

⎣ Xi tstBias is the squared model bias for the ith test prediction. 

6.3 Overview of Methodology 

In this section, the analysis procedures used in the subsequent examples are presented in detail.   

6.3.1 Analytic methodologies 

The procedure for applying the analytic uncertainty equations is described by the following process.  
The first five steps develop the uncertainty estimate, and the final three steps use the uncertainty to 
analyze the data.  The process for calculating the point-wise, analytic uncertainty is presented in Fig. 6-1. 

1. Load data, detect and correct outliers, and divide data into training, test, and validation sets.  
The training set is used to create a model, the test data are used to quantify the bias, and the 
validation data are used as actual query data. 

2. Denoise test the data with the wavelet denoising algorithm to estimate the noise variance. 
3. Develop empirical model with the training data. 
4. Predict the “correct” sensor values using an empirical model and predict the variance of the 

estimates with the analytic equations for the test data.  
5. Calculate MSE of test predictions.  Apply Eq. (6.2.2) with the point-wise variance estimates 

and noise variances to estimate the model bias.  For this analysis a conservative estimate of 
the bias is calculated to be the 95% percentile of the estimated bias distribution. 

6. Predict the “correct” sensor values and the variance of the estimates with the analytic 
equations for the validation data. 

7. Denoise the validation data and evaluate Eq. (6.1) with the model variance and bias to 
estimate the prediction CIs. 

8. Denoise the prediction residuals of the validation data and evaluate Eq. (6.2) with the model 
variance and bias to estimate the residual CIs.  
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Fig. 6-1.  Process diagram for analytic uncertainty estimation of an empirical model. 
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6.3.2 Monte Carlo methodologies 

The procedure for applying the Monte Carlo resampling techniques is described by the following 
process.  The first six steps develop the uncertainty estimate, and the final three use the uncertainty to 
analyze the data.  The methodology for calculating the 95% percentile Monte Carlo uncertainty is 
presented in Fig. 6-2.  Notice that since the Monte Carlo uncertainty estimate is determined entirely from 
the training and test data, that the validation is not used in the process depicted in Fig, 6-2. 

1. Load data, detect and correct outliers, and divide data into training, test, and validation data 
sets. 

2. Denoise the test data with the wavelet denoising algorithm in order to estimate the noise 
variance. 

3. Optimize empirical model architecture with the training data. 
4. Predict the expected “correct” sensor values and the variance of the estimates for the test data 

by resampling the training data, developing and testing multiple prototype models.  The 
single point model variance is estimated by calculating the 95% percentile of the estimated 
variance distribution. 

5. Calculate MSE of expected test predictions.  Apply Eq. (6.2.2) with the single point variance 
estimates and noise variances to estimate the model bias.  For this analysis a conservative 
estimate of the bias is calculated to be the 95% percentile of the estimated bias distribution. 

6. Combine the estimate of the model variance and bias to form a 95% percentile uncertainty 
prediction. 

7. Using the empirical models, predict the “correct” sensor values for the validation data. 
8. Denoise the validation data and evaluate Eq. (6.1) with the single point uncertainty estimates 

to form the Monte Carlo prediction CIs. 
9. Denoise the residuals for the predictions of the validation data and evaluate Eq. (6.2) with the 

single point uncertainty estimates to form the Monte Carlo residual CIs.  
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Fig. 6-2.  Process diagram for Monte Carlo uncertainty estimation of an empirical model. 
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6.3.3 Fault detection 

Because the overall goal of estimating an empirical model’s uncertainty for instrument calibration 
verification is to identify sensor faults, a methodology must be developed that provides fault detection 
capability in an easily tractable manner.  The method developed and employed in this example is termed 
error uncertainty limit monitoring (EULM).  Rather than simply thresholding the sensor’s error, the 
predicted uncertainty (i.e., residual CI) is monitored, and a fault is registered when the uncertainty 
interval crosses the specified threshold.  This detection method is more clearly stated by the following 
procedure. 

1.  Estimate the residual CI by denoising the residuals and applying an uncertainty estimate. 
2.  Define a calibration threshold (assume it is 1%). 
3.  Identify a sensor as out of calibration if sustained uncertainty estimates for the denoised 

residuals cross the  threshold. 1%±

6.4 Example with Artificially Generated Data 

For this example, data were generated with the following base equation: 

 
 ( ) ( )sin 2 .= πf x t  (6.4.1) 

 
Here, t is uniformly spaced on the interval of [0, 3].  To provide data that is similar to that of 

redundant sensors, three unique biases were added.  The following equation provides the true data for the 
three artificial variables used in this section: 

 

 ( ) (sin 2= πi )f x t    with i = 1,2,3 . (6.4.2) 

 
Finally, normally distributed random noise with a mean of 0 and a variance of 0.04, Ni (0, 0.4), was 

added to each variable’s true value.   

 
  (6.4.3) ( ) ( )1 1 1 0,0.04 .= +x f x N
 
  (6.4.4) ( ) ( )2 2 2 0,0.04 .= +x f x N
 
  (6.4.5) ( ) ( )3 3 3 0,0.04 .= +x f x N
 

One such signal is presented in Fig. 6-3. 
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Fig. 6-3.  Artificially generated signal. 

 
The data sets were selected by first creating 10 sets of 60 continuous observations.  Next, the training 

data were defined to be sets 1, 5, 6, and 10.  The test data are defined to be sets 2, 3, and 4, while the 
validation data are defined to be sets 7, 8, and 9.  The selected sets are presented in Fig. 6-4.  The training 
data were used to develop the empirical models, while the test data were used to develop estimates for the 
noise variance and the model’s bias.  Finally, the validation data were used to validate the uncertainty 
estimates by calculating coverage values.   

 

 

Fig. 6-4.  Training, test, and validation data sets. 
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Before the empirical model’s uncertainty is estimated, the assumption of normally distributed 
random error is validated by using wavelet denoising to estimate the data’s true value.  In Fig. 6–3, it can 
be seen that wavelet denoising is able to estimate the data’s true value to a high degree of accuracy.  
Furthermore, it can be seen in Table 6-1 that the estimated noise parameters are very near their actual 
values. 

 

 

Fig. 6-5.  Wavelet denoising estimates for the true values of the artificial data. 

 
 

Table 6-1.  Comparison of estimated noise parameters 
to actual distribution 

  x1 x2 x3 

Actual –0.0031 0.0003 –0.0011 

M
ea

n 
(μ

) 

Estimated –0.0005 –0.0005 –0.0004 

Actual 0.1925 0.1970 0.2060 

ST
D

 (σ
) 

Estimated 0.1913 0.1975 0.2060 

 
The estimated standard deviations in Table 6-1 were squared to provide  for use in Eq. (6.1).   2ˆ εσ

6.4.1 Analytic methodologies 

To test the analytic equations developed in Chap. 5, representative models were created and tested.  
For completeness, the AAKR model was constructed by using 60 of the training observations as memory 
vectors and using a bandwidth of 0.5.  The AAMSET model was constructed by selecting 12 memory 
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vectors from the training data according to a min-max and sort-select strategy described by Gross et al. 
[2002] and uses a bandwidth of 1.0.  Finally, the AANN model architecture was selected to have one 
mapping/demapping neuron and one bottleneck neuron. 

The contributing factors to the total uncertainty are presented in Table 6-2, where the listed variances 
are the mean or expected variances. 

 
Table 6-2.  Contributing uncertainty factors for 

analytic uncertainty estimates of the artificial data 

  x1 x2 x3 

 σε̂2 0.0369 0.0346 0.0474 

Variance 0.0017 0.0021 0.0031 
AAKR 

Bias 0.0000 0.0048 0.0000 

Variance 0.0044 0.0069 0.0078 
AAMSET 

Bias 0.0199 0.0341 0.0093 

Variance 0.0005 0.0006 0.0005 
AANN 

Bias 0.0000 0.0000 0.0000 

 
The mean uncertainty of each model for an approximate 95% confidence level was calculated and is 

displayed Table 6-3.  Also, the mean coverages of the estimated prediction intervals were found to have a 
comparable performance to the theoretical 95%.  This indicates that the analytic uncertainty estimates are 
near their true values.   

 
Table 6-3.  Analytic uncertainty estimates and Pl coverages 

for the artificially generated data 

 U (x1) U (x2) U (x3) 
Mean 

coverage 

AAKR 0.422 0.421 0.463 0.948 

AAMSET 0.463 0.47 0.44 0.939 

AANN 0.424 0.404 0.41 0.981 

 
Finally, the model predictions and prediction uncertainties are displayed in Fig. 6-6.  For each of the 

models, the raw data are displayed (blue points) with their respective estimates and 95% uncertainties (red 
error bars).   
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Fig. 6-6.  Predications and analytic uncertainty estimates of the three empirical models 
for the artificially generated data. 

 
Notice that the uncertainty is dominated by the noise variance (Fig. 6-7), whose percent contribution 

is on the order of 80–95% of the total uncertainty.  If the noise variance is large, the model’s ability to 
detect subtle sensor drifts will be difficult when using PIs on the predictions.  As was discussed earlier, 
CIs on filtered residuals circumvent that problem.  This issue will be addressed in the subsequent sections 
in which actual plant data are analyzed. 
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Fig. 6-7.  Prediction interval uncertainty decomposition for analytic estimates 
of the artificially generated data. 

 
Overall, the uncertainty estimates are comparable for each empirical modeling technique.  It can be 

seen that because the AAMSET restricts the number of memory vectors used in the model, its uncertainty 
is larger than the AAKR model, which uses more exemplar vectors.  However, if the number of memory 
vectors in the AAKR model is restricted this difference will not be significant.  It is common for the 
AAMSET to have very few exemplar vectors to minimize the possible negative effects of inverting an ill-
conditioned similarity matrix.  If more vectors are used, the observations become similar, and ill-
conditioning results.  Regularization methods can be used to produce more stable results when many 
prototype vectors are used [Hines 2002].  

6.4.2 Monte Carlo methodologies 

To compare the Monte Carlo uncertainty estimation methodologies, the AAKR model described in 
the previous section was used with the two Monte Carlo algorithms described in Chap. 6.  This section 
will compare the techniques according to their asymptotic performance and convergence characteristics. 

6.4.2.1 Comparison of asymptotic performance 

The Monte Carlo process for estimating the uncertainty of the model’s expected predictions for the 
test data was generated as follows: 
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1. create prototype training data: 
(a) direct bootstrap—randomly sample the training data with replacement, 
(b) LHS—sample the estimated noise distribution and add sample to the estimated noise free 

training data; 
2. construct prototype model, 
3. simulate model with test data, 
4. store results, 
5. return to 1 until 250 prototype models have been created and tested, and 
6. estimate the model’s prediction variance. 

Because Monte Carlo methodologies are used to estimate a single-point uncertainty estimate for the 
data, the variance is estimated by the 95% percentile of the estimated distribution and then expanded such 
that it has the same dimension as the validation data.  Next, the single-point uncertainty for the validation 
data is estimated by combining the mean prediction variance with the estimated noise variance and the 
bias.  Finally, the AAKR model is used to make predictions for the validation, which are used to construct 
the PIs.   

The contributing factors to the model uncertainty are presented in Table 6-4.  The estimated single-
point uncertainties with the expected PI coverages are presented in Table 6-5.  Finally, the error bar 
uncertainty plots of the results are presented in Fig. 6-8.  Note that the bias values quoted in Table 6-4 are 
not the variable’s bias, but the respective model prediction bias.  

 
Table 6-4.  Contributing uncertainty factors for Monte Carlo uncertainty estimates 

of the artificial data and AAKR model 

  x1 x2 x3 

 σ̂ε2 0.0369 0.0346 0.0474 

Var(x̂) 0.0017 0.0021 0.0031 
Actual 

(analytic) 
Bias 0.0000 0.0048 0.0000 

Var(x̂) 0.0046 0.0060 0.0048 

Bootstrap 
Bias 0.0000 0.0000 0.0000 

Var(x̂) 0.0038 0.0042 0.0043 
LHS 

Bias 0.0000 0.0014 0.0000 
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Table 6-5.  Monte Carlo uncertainty estimates and 
Pl coverages for artificial data 

 U (x1) U (x2) U (x3) 
Mean 

coverage 

Actual 
(analytic) 0.422 0.421 0.463 0.948 

Bootstrap 0.453 0.441 0.463 0.961 

LHS 0.449 0.427 0.463 0.957 

 
 

 

Fig. 6-8.  Predictions and Monte Carlo uncertainties for artificial data. 

 
It can be seen in Table 6-5 and Fig. 6-6 that the methods are almost equivalent.  Also, it can be seen 

that the estimated uncertainties and their respective PI coverages are very similar to the analytic estimates.  
This indicates that for a sufficiently large number of Monte Carlo samples, the methods produce similar 
results to the analytic equations, thus validating the theoretical derivation of the equations presented in 
Sect. 4.2.  Also, notice in Fig. 6-9 that the major contributing factor to uncertainty is the noise variance.  
In the next section, the convergence characteristics of the two Monte Carlo methods will be evaluated. 
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Fig. 6-9.  Prediction interval uncertainty decomposition for Monte Carlo estimates 
of the artificially generated data. 

6.4.2.2 Comparison of convergence characteristics 

In Sect. 5.3, the convergence properties of the two Monte Carlo estimation methods were compared 
with simulated data.  In this section, actual nuclear power plant data will be used.  The process used to 
characterize the convergence characteristics of the two Monte Carlo estimation methods is as follows: 

1. Estimate uncertainty of the AAKR model by creating and testing 2, 5, 10, 20, 30, 40, 50, 75, 
and 100 prototype models; 

2. Store the estimated variance for the 10th observation of the 1st variable; 
3. Return to step 1 until 100 estimates have been made. 

The result of the above algorithm is a distribution of the estimated variance as a function of the 
number of prototype models.  It is expected that for each Monte Carlo sampling method, the uncertainty 
of the estimated variances would start high, since only two prototype models are tested, and will begin to 
decrease as more prototype models are tested.  The main purpose of this methodology is to ascertain 
whether or not the more complex LHS algorithm converges faster than the direct bootstrap for actual data.  
In other words, this comparison answers the question whether or not the increased number of assumptions 
required for LHS produce any positive effects on the number of model’s required to reach the stability of 
the simple, direct bootstrap.   

Before results are presented, the technique used to ascertain the variance distribution’s uncertainty 
must be discussed.  For this analysis, the uncertainty of the variance is defined as the interval of values 
between the 2.5 and 97.5 percentiles.  For example, this interval is defined as approximately ±2σ for the 
standard normal distribution (i.e., N (0,1)), which is presented in Fig. 6-10. 
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Fig. 6-10.  95% uncertainty for standard normal distribution. 

 

Because the distribution of the estimated variances is not known, the percentiles are calculated, via a 
numerical process, as follows: 

1. order the 100 variance estimates; 
2. define the 2.5% percentile’s x value (x.025) as the average of the 2nd and 3rd variance estimate 

from the ordered values; 
3. define the 97.5% percentile’s x value (x.975) as the average of the 97th and 98th variance 

estimate from the ordered values; and 
4. define the 95% uncertainty as the difference between x.975 and x.025 (x.975–x.025). 

The median variance estimates, their respective percentiles, and the 95% uncertainties for the direct 
bootstrap and LHS algorithms may be seen in Table 6-6. 
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Table 6–6.  Convergence characteristics for direct bootstrap 
and LHS sampling methods and artificial data 

 Number of 
prototype models 2.5 Percentile Median 

variance 97.5 Percentile 95% 
Uncertainty 

2 0 0.0024 0.0272 0.0272 

5 0.0009 0.0057 0.0199 0.019 

10 0.0016 0.0063 0.0142 0.0126 

20 0.003 0.0068 0.0143 0.0113 

30 0.0043 0.0066 0.0118 0.0075 

40 0.0039 0.0065 0.0112 0.0073 

50 0.0041 0.0071 0.013 0.0089 

75 0.0052 0.0074 0.0104 0.0052 

B
oo

ts
tr

ap
 

100 0.005 0.0072 0.0092 0.0042 

2 0.0001 0.0019 0.0276 0.0276 

5 0.0004 0.0058 0.0192 0.0188 

10 0.0018 0.0055 0.0142 0.0124 

20 0.0021 0.0063 0.0117 0.0096 

30 0.0033 0.0055 0.0098 0.0066 

40 0.0037 0.0061 0.0085 0.0048 

50 0.0038 0.0061 0.0113 0.0075 

75 0.004 0.0059 0.0098 0.0059 

L
H

S 

100 0.0045 0.0062 0.0081 0.0036 
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The behavior of the variance uncertainty is presented in Fig. 6-11. 

 

 

Fig. 6-11.  Convergence characterization of Monte Carlo variance estimates for artificial data. 

 
It can be seen that the LHS and direct bootstrap convergence rates are not significantly different.  

Therefore, it can be inferred that the convergence performance of LHS is not sufficiently improved to 
warrant the increase in computational complexity as compared to the direct bootstrap.  These results are 
slightly different than those presented in Sect. 5.3, but a more exact method is used to quantify the 
estimated variance. 

6.5 Example with Nuclear Plant Data 

In this section, data collected from the steam system of an operating nuclear plant is used to test the 
analytic and Monte Carlo uncertainty estimation methodologies.  Next, error uncertainty limit monitoring 
(EULM) is used to detect an artificial sensor drift of 1%. 

The model (variable grouping) chosen was developed during the EPRI OLM Implementation Project 
and is currently being used to monitor steam system sensor calibration at an operating plant; thus, it is an 
appropriate model to evaluate.  The steam system model contains 13 plant sensors, primarily from 1 loop, 
which include 2 feedwater flow sensors, 2 steam flow sensors, 3 steam generator level sensors, 2 turbine 
pressure sensors, and 3 steam pressure sensors.  The quoted sensor units are as follows:  (1) feedwater and 
steam flow in thousands of pounds per hour (klbm/h) was logged by the data acquisition system as KBH, 
(2) steam generator level in percent (i.e., 100% is full), (3) turbine pressure in pounds per square inch 
atmospheric (PSIA), and (4) steam pressure in pounds per square inch gauge (PSIG).  The training data 
for each of the sensor types is presented in Fig. 6-12. 
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(a)                                                                      (b) 

 
(c)                                                                      (d) 

 
(e) 

 

Fig. 6-12.  Training data for (a) feedwater flow, (b) stream flow, (c) stream generator level, 
(d) turbine pressure, and (e) steam pressure. 
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The data presented in Fig. 6-12 were selected from data collected every 2 min over a 2-month period.  
Overall the training, test, and validation data span approximately 2 weeks of data observing every 5th 
sample or every 10 min.  

The training data were chosen to be 1600 observations from steady state plant operation.  The test 
and validation data were chosen to be two successive sets of 200 observations sampled from steady state 
plant operation.  The training data were used to develop the empirical models, the test data were used to 
develop estimates for the noise variance and the model’s bias, and the validation data were used to 
validate the uncertainty estimates and test the empirical model’s ability to detect an artificial drift.   

To begin this analysis, the test data were denoised with the wavelet technique described earlier.  The 
resulting signals are presented in Fig. 6-13.  The estimated noise variances are presented in Table 6-7.  
Table 6-7 also includes 2 standard deviations of the noise estimates in terms of percentage of the sensor’s 
mean value.  For example, if a sensor’s nominal value is 100 and 2 standard deviations of the noise 
distribution is estimated to be 10, then the standard deviations in terms of the nominal value is 

10
100100% 10%× = .  In other words, 95% of the noise is on the interval of ±10% the signal’s nominal 

value. 

 126



 

 
(a)                                                                      (b) 

 
(c)                                                                      (d) 

 
(e) 

 

Fig. 6-13.  Denoised test data for (a) feedwater flow, (b) steam flow,(c) steam generator level, 
(d) turbine pressure, and (e) steam pressure. 
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Table 6-7.  Estimated noise variance and noise level for nuclear plant data 

 
 

In Fig. 6-13 notice that the wavelet denoising algorithm may have over smoothed the data.  This 
supposition is based upon the features of the plots presented in Fig. 6-13.  It can be seen that on numerous 
occasions the data for each of the variables within the groups move well outside the range of values that 
the wavelet denoising algorithm deems important.  The reason that this occurs is that the wavelet 
denoising algorithm examines all of the sensors in the data set as a group and does not produce optimal 
filtering parameters for each sensor.  This effectively degrades the algorithm’s ability to identify local 
group correlations because a significant correlation only occurs when the behavior is present in the 
observations of most of the sensor’s data.  For example, even though the correlated spikes in the turbine 
pressure data occur in both sensors, the wavelet denoising algorithm is unable to identify these 
observations as containing useful system information because the same pattern is not present in the other 
sensor groups.  From these results, the coverages of the estimated CIs are expected to deviate from their 
theoretical value of 0.95, because the estimated noise variance is expected to be biased.  Future work in 
this area should allow for wavelet denoising to be applied to each sensor in the group, which would 
improve the accuracy of the estimated “true” signals and the noise distribution.  This is discussed in more 
detail in Volume 3 of this NUREG series. 

Next, notice that the largest noise level is on the feedwater flow and steam flow sensors.  For two 
standard deviations, the sensor uncertainties are on the order of ±1%, which are the specified calibration 
limits.  Because the variability in the feedwater flow is one of the largest, these sensors will be one of the 
more difficult groups to successfully apply the calibration monitoring methods described in this report.  
Therefore, most of the discussion in the remainder of this example will focus on the two feedwater flow 
sensors. 

6.5.1 Analytic methodologies 

The AAKR model used in this example is composed of 200 memory vectors, has a kernel bandwidth 
of 0.5, and uses the L1-norm distance function.  The AAMSET model is composed of 52 memory 
vectors, has a kernel bandwidth of 1.0, and uses the L1-norm distance function.  Finally, the AANN 
model contains six mapping/demapping neurons and three bottleneck neurons. 

As in the previous example, the analytic CIs were used to estimate the model uncertainty.  The 
contributing factors to uncertainty are presented in Table 6-8.  The mean uncertainties and their respective 
CI coverages of the denoised data are presented in Table 6-9 and Table 6-10, respectively.  The point-
wise uncertainty estimates for the first feedwater flow sensor are displayed in Fig. 6-14, where the raw 
data are denoted by blue points, the denoised data by a dashed black line, and the prediction CIs by red 
error bars.  Finally, the denoised residuals and their uncertainties are presented in Fig. 6-15, where the 
raw residuals are denoted by blue points, the CIs of the denoised residuals by red error bars, and the ±1% 
tolerances by heavy dashed black lines. 
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Table 6-8.  Contributing analytic uncertainty estimate components for the nuclear plant data 

 
 
 
 
 

Table 6-9.  Analytic uncertainty estimates for the nuclear plant data 

 
 
 
 
 

Table 6-10.  Coverages of denoised data by analytic CI 
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Fig. 6-14.  Analytic CIs for AAKR, AAMSET, and AANN models for the first feedwater flow sensor. 
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Fig. 6-15.  Denoised residuals and analytic uncertainty estimates for the first feedwater flow center. 

 
It can be seen in Table 6-8 that the major contributing factor to model uncertainty is the model 

variance.  This is a result of the fact that the data are relatively simple, in that they generally oscillate 
about a nominal value and contain a single state for the operating reactor (i.e., ~100% power).  Data that 
are more varied may have larger bias values. 

Next, it can be seen in Table 6-9 that the uncertainties are small compared to the estimated noise 
levels in Table 6-7.  For example, the largest sensor uncertainty for the AAKR model is 0.93% its 
nominal value, while the noise level is 1.31%.  Furthermore, notice that the “worst case” estimate of 
0.93% is within the 1% tolerance.  This proves that the presented analytic methodologies are applicable 
for use in instrument calibration validation systems; however, even the slightest drift would require 
recalibration.   

It can be seen in Table 6-9 and Fig. 6-14 that the fraction of the denoised data covered by the 
analytic CIs is slightly below the theoretical 0.95 or 95% for the AAKR and AAMSET.  Next, notice that 
the coverage of the AANN CIs is well below the theoretical 0.95.  These features may be attributed to 
imperfections in the estimated “true” values.  Another factor that may influence the CI coverage is the 
inherent difference between parameter estimates of the empirical model and wavelet denoising algorithm.  
In short, the empirical models may estimate a different “true” value than the wavelet denoising.  One 
could argue for the validity of both methods’ estimates.  For example, the empirical model’s estimates 
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could be considered more accurate since they base their estimates on historical, fault free data, while the 
wavelet denoising method could be considered more accurate since it acts to remove noise from data 
without making any suppositions as to the system’s current state.  At any rate, because the uncertainty of 
the model estimates are smaller than the noise level, the difference between the model’s “perceived” true 
value and the denoised estimate affects the coverage of the analytic CIs.   

Finally, notice that the denoised residuals and their analytic uncertainties are evenly distributed about 
zero for the AAKR and AAMSET model.  Overall, the denoised residuals appear to behave as expected 
and therefore provide an accurate estimate of the model’s noise free, prediction error.  Also, the analytic 
residual uncertainties are mostly within the prescribed tolerance and therefore should provide accurate 
detectability for drifts on the order of ±1%.   

6.5.2 Monte Carlo methodologies 

To verify the analytic uncertainty estimates of the previous section, 250 prototype AAKR models 
were created and tested using both direct bootstrap sampling and LHS.  The architecture of the AAKR 
models developed and tested in this section contains 200 memory vectors, has a bandwidth of 0.5, and 
uses the L1-norm distance function. 

The contributing factors to uncertainty are presented in Table 6-11.  The mean uncertainties and their 
respective CI coverages of the denoised data are presented in Table 6-11 and Table 6-12, respectively.  
The 95% percentile uncertainty estimates for the first feedwater flow sensor are displayed in Fig. 6-16, 
where the raw data are denoted by blue points, the denoised data by a dashed black line, and the 
prediction CIs by red error bars.  Finally, the denoised residuals and their uncertainties are presented in 
Fig. 6-17, where the raw residuals are denoted by blue points, the CIs of the denoised residuals by red 
error bars, and the ±1% tolerances by heavy dashed black lines. 

 
Table 6-11.  95% percentile of contributing uncertainty factors to Monte Carlo 

uncertainty estimates for nuclear plant data 
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Table 6-12.  95% percentile Monte Carlo uncertainty estimates for nuclear plant data 

 
 
 
 

Table 6-13.  Coverages of denoised data by 95% percentile Monte Carlo CI 

 
 
 
 

 

Fig. 6-16.  95% percentile Monte Carlo CIs for direct bootstrap sampling and LHS 
of the first feedwater flow sensor. 
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Fig. 6-17.  Denoised residuals and Monte Carlo uncertainty estimates for the first feedwater flow sensor. 

 
As with the analytic estimates, it can be seen in Table 6-11 that the major contributing factor to the 

Monte Carlo uncertainty estimate is the model variance.  Furthermore, notice that Monte Carlo variance 
estimates are larger than the analytic estimates.  This illustrates the fundamental difference between the 
two uncertainty estimation methodologies: the analytic methods estimate the uncertainty of a particular 
empirical model, while the Monte Carlo methods estimate the uncertainty of a particular model 
architecture for a given set of training and test data.  

Next, notice in Table 6-12 that even though the Monte Carlo variance estimates are larger than the 
analytic estimates, the uncertainties are still within the ±1% tolerance.  For example, the largest 
Monte Carlo uncertainty for the first feedwater flow sensor (direct bootstrap sampling) is ±27.87 klbm/h, 
which translates to ±0.94% of the sensor’s nominal value. 

It can also be seen in Table 6-12 and Fig. 6-16 that the coverage of the denoised data by the 
Monte Carlo CIs has increased as compared to the coverage of the analytic results and is now very near 
the theoretical value of 0.95.  This increase in coverage is a direct result of the larger Monte Carlo 
uncertainty estimates.  

Finally, Fig. 6-17 shows that the denoised residuals are evenly distributed about zero, and the 
uncertainties consistently lie within the 1% tolerance.  Therefore, the Monte Carlo techniques should 
provide accurate fault detectability, despite an increase in predicted uncertainty as compared to the 
analytic estimates.   

6.5.3 Drift detection 

Recall that the overall goal of instrument calibration validation systems is to use the predictions and 
uncertainty to detect sensor drifts.  As in most processes, sensors are allowed to operate about their 
nominal value with some tolerance.  Recall that an error or residual tolerance of 1% was specified.  
Rather than simply thresholding the sensor’s error, the predicted uncertainty was monitored, registering a 
fault when the uncertainty of the error moved outside the specified threshold.  This method of fault 
detection is termed error uncertainty limit monitoring (EULM). 

For this example, an artificial drift is introduced into the first feedwater flow sensor.  This drift is set 
to progress linearly from 0% to −1% throughout the entire validation data.  The normal, artificially 
drifted, and the AAKR predictions and uncertainties given the drifted data are presented in Fig. 6-18.  The 
single-point uncertainty produced by direct bootstrap sampling and 250 prototype models was used, 
because its uncertainty estimates are the largest and therefore most conservative.  
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Fig. 6-18.  AAKR predictions and for artificially drifted feedwater flow sensor. 

 
Notice that even though the AAKR model is supplied faulted data it is able to predict the normal 

operating values with a high degree of accuracy.  

To quantifiably identify the drift, the AAKR predictions are subtracted from the drifted data 
providing a residual signal.  The residual is then denoised and combined with the bootstrap uncertainty 
estimates, providing a CI for the residual.  The error CI is then compared to the predefined threshold of 
±1% to detect the drift.  The results of applying EULM are presented in Fig. 6-19.  The upper graph in 
Fig. 6-19 shows the denoised residual of the prediction and actual sensor value along with its uncertainty.  
The lower graph shows the output of the fault detection algorithm.  Notice that the drift is consistently 
detected by the 105th observation.  Since the drift is linear, the drift is identified when the sensor has 
degraded by approximately 0.5% its nominal value.  This is necessary because when the interval crosses 
the tolerance, one no longer is 95% confident that the sensor has not drifted beyond its calibration 
tolerance.  Spurious alarms could be reduced through filtering or alarm logic.  It could be argued that 
using a filter to reduce the variance is permissible because the drift is considered a bias with very slow 
dynamics.  
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Fig. 6-19.  Results of EULM fault detection with AAKR and 1% artificial drift. 

 

6.6 Confidence Intervals vs Prediction Intervals 

One consideration that deserves additional discussion is whether the confidence intervals (CIs) or 
prediction intervals (PIs) should be used in OLM for calibration extension.  Experience shows that many 
sensors contain a significant amount of noise that escalates the PI so that the residual uncertainty exceeds 
the drift allowance, even when no drift is present.  In turn, the smaller CIs can only be applied when the 
true, noise-free, value is known.  To obtain a noise-free estimate of the sensor drift, the residual must be 
filtered. A usual concern with filtering process signals is that it may remove the process dynamics; 
however, this concern does not apply to residuals in which the drift dynamics are very slow.  Thus, a CI 
applied to a filtered residual can be employed by OLM uncertainty analyses. 

6.6.1 CI vs PI case study 

The CI and PI theory was explained in Sect. 3.1.2.  This section will investigate the suitability of the 
PI and CI for sensor calibration monitoring uncertainty quantification. Historically, the PI was considered 
more appropriate for OLM analyses because it provides the accuracy with which the desired response can 
be predicted and not just the accuracy of the model itself [Rasmussen 2003].  However, with repeated 
studies using actual nuclear power plant data, it was found that in some cases the sensor noise can inflate 
the PI (which includes the noise variance term) to an amount that makes the residual exceed the threshold, 
even when no drift is present.  Figure 6-20 presents the nuclear feedwater flow data used in this study.  
However, to be thorough, additional studies were conducted using steam flow, steam generator level, 
turbine pressure, and steam pressure sensor data with similar results. 
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Fig. 6-20.  Feedwater flow data. 

 
Figure 6-21(a) illustrates the large PIs produced when noisy sensors are modeled.  The figure shows 

a residual computed by subtracting measured feedwater flow values from estimates made by an auto-
associative kernel regression model.  The 95% prediction interval for the residual was calculated using 
Eq. (3.1.2.5).  In this equation, the variance was estimated using an analytic technique, the bias was 
computed using the bias-variance decomposition equations, and the noise variance was estimated by 
employing kernel smoothing [Wand 1995].  Other techniques for sensor noise prediction include wavelet 
denoising, ICA filtering, and median filtering. The large prediction interval causes the residual to reach 
the assumed 1% drift tolerance, even though the sensor has not drifted.  Since repeated trials showed this 
same scenario for many types of sensors, it can be concluded that PIs may not be feasible for OLM 
uncertainty interval quantification.  
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   (a)      (b)  

Fig. 6-21.  Residual with (a) 95% prediction interval and (b) 95% confidence interval. 

 

In contrast, CIs usually give acceptable OLM uncertainties. Figure 6-21(b) shows a 95% CI applied 
to the same feedwater flow residual as used in the previous example.  The CI was calculated using 
Eq. (3.1.2.6). The figure illustrates that the smaller CI does not violate the 1% drift limit.  However, there 
must be justification for using the CI.  This needed justification comes from further examination of the CI 
and its application to the residual. 

Again, a 95% PI implies that the measured value is covered 95% of the time, whereas a 95% 
confidence interval implies that the true value is covered 95% of the time.  As previously discussed, the 
CI is desired for OLM uncertainty quantification because its values are lower and typically fall below the 
drift limit.  However, the CI assumes that the true value is known and cannot be applied if the assumption 
is not met.  If the system is sampled and a denoising technique is applied, then a good estimate of the 
noise free variable can be obtained.  This would remove the noise term from the uncertainty equation, and 
the PI would essentially collapse to the CI.   

If filtering is used, the bandwidth must be selected so that the process dynamics are retained.  To do 
this, the system must be sampled faster than the process dynamics and the filter set appropriately. 
However, the residual can be filtered without these requirements.  This residual can be filtered because 
the process dynamics are in both the variable and estimate, and have been cancelled out when forming the 
residual.  The only dynamics in the residual are the drift dynamics.  Because drift dynamics are very slow, 
a lower sample rate is permissible. Figure 6-22 compares the filtered and unfiltered residuals from the 
same feedwater flow sensor that has been injected with an artificial drift.  The drift is still discernable 
even when filtered.  Thus, the residual can be filtered without losing drift dynamics.  The filtered residual 
can be interpreted as the true value of the residual, because none of the dynamics have been lost and only 
the noise removed.  This fact means that a CI can appropriately be applied to the filtered residual, because 
the true value is assumed to be known.   
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                                          (a)                        (b) 

Fig. 6-22.  Drifted feedwater flow residual (a) without filtering and (b) with filtering. 

 
Figure 6-23 compares the filtered residuals of the nondrifting and drifting feedwater flow sensor with 

95% confidence intervals.   
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  (a)                                                                           (b) 

Fig. 6-23.  Filtered residual with 95% confidence interval of a (a) normally operating feedwater 
flow sensor, and (b) drifted feedwater flow sensor. 

 
Figure 6-23 illustrates that a CI applied to a filtered residual is capable of detecting drift, but does not 

exceed the drift limit when no drift is present.  Because drift detection is the primary goal of an OLM 
sensor calibration monitoring system, this result supports the use of CIs in the uncertainty analysis.  These 
results assume the bias and variance were properly quantified. 
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6.6.2 Conclusion 

This chapter has described two common representations of OLM model predictive uncertainty: the 
confidence interval (CI) and prediction interval (PI).  A PI provides the uncertainty for each individual 
model’s prediction, whereas a CI gives the uncertainty for the model’s expected prediction.  Because the 
PI is an interval for the value of a single new measurement from the process, it includes the noise that is 
inherent in the estimates and the uncertainty of the new measurement. This means that the PI is always 
larger than the CI.  These larger PIs can be larger than the drift limit, even when the sensor has exhibited 
no drift.  The smaller CIs generally fall below the drift limit, but can only be used if supported by a 
theoretical basis.  By considering the functionality and theory of the OLM residual, it was determined that 
the CI could be correctly applied when the residual was filtered and no longer contained the sensor noise.  
A residual can be filtered without fear of losing the process dynamics.  Additionally, it is assumed that 
since the drift is slow moving, only the noise will be removed when a residual is filtered, providing an 
accurate estimate of the residual’s “true” value.  With an estimate of the “true” residual, a CI can 
appropriately be applied and is considered suitable for OLM.   

6.7 Synthesis of Results 

This chapter has illustrated several useful features of current uncertainty estimation techniques.  A 
concise summary of these features is listed below. 

1.  Analytic Methodologies 
(a)  When all assumptions are known to be satisfied, they produce uncertainty estimates that 

are in direct agreement with their theoretical values. 
(b)  When all of the assumptions are not known to be satisfied, then the overall uncertainty 

estimate should change from its actual values.  However, this change from the theoretical 
has been shown to be small when compared to nuclear plant data, whose operation is 
often about a steady nominal value. 

(c)  The analytic methodologies produce uncertainty estimates that are very near asymptotic 
values of the Monte Carlo methodologies. 

2. Monte Carlo Methodologies 
(a)  When all assumptions are known to be satisfied, the performance of the direct bootstrap 

sampling and LHS are nearly equivalent. 
(b)  The convergence characteristics of the uncertainty of the estimated variance for direct 

bootstrap and LHS are nearly equivalent.  This indicates that the increased computational 
complexity of LHS is not necessary to produce reliable and accurate uncertainty 
estimates. 

3.  Fault Detectability for Nuclear Plant Data 
(a)  The noise levels in the feedwater flow and steam flow sensors prevent the application of 

the PI.   
(b)  When the CI is applied to denoised prediction residuals, the uncertainties are generally 

within the ±1% calibration tolerance.  Therefore, the use of the CI for fault detection is 
applicable for instrument calibration monitoring systems. 

Although this section demonstrated OLM’s ability to verify a sensor’s calibration status, several 
factors may limit the application and usefulness of the predictive modeling methods.  Some of the 
concerns with these methods will be discussed in the following chapter, which provides a brief summary 
of the report’s contents and then attempts to address any potential issues surrounding OLM.  Additionally, 
Volume 3 of this NUREG series will investigate several modeling assumptions and present the effects of 
not meeting those assumptions.   
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7. CONCLUSIONS AND ADDITIONAL CONCERNS 

7.1 Summary 

The goal of this report was to present an evaluation of the most current OLM techniques that have 
been investigated for use in extending the required manual calibration interval of safety critical instrument 
channels.  The report presented several empirical prediction models, namely AANN, AAKR, and 
AAMSET, and investigated their use for OLM.  The report provided a theoretical basis for the analysis of 
the model predictive uncertainty.  The assumptions in both the Monte Carlo and analytically based 
uncertainty predictions strategies were also evaluated.  The report used both simulated and real data to 
compare both uncertainty methods.  The comparison showed that when all assumptions were satisfied, 
both the analytical and Monte Carlo methods produce predictions in agreement with their theoretical 
values.  

7.2 Concerns 

The usage of OLM systems requires that the assumptions inherent in the systems will always be met, 
or in cases when they are not met, either the impact is known to be insignificant, or proper safeguards are 
in place.  This implies that the OLM method and uncertainty analysis cannot be treated simply as a “black 
box.”  Rather, there must be a comprehensive knowledge of the system’s theoretical foundations so that in 
the cases in which there is an anomaly or an assumption is no longer valid, proper actions can be taken 
before plant safety is compromised.  Engineering judgment must often be exercised when making 
decisions regarding the actions that must be taken in response to potential problems with an OLM system.  
In the following sections, some of the basic assumptions surrounding the different functional tasks in the 
OLM process are discussed. Volume 3 of this series will investigate several of the assumptions in more 
detail, quantify the results of not meeting the assumptions, and provide methods to identify cases in which 
the assumptions are not met. 

7.2.1 Data assumptions 

The results presented in this report were constructed using several underlying assumptions.  The 
main assumptions were that the data used to build the model was error-free and representative of the 
system and that it covered the entire future operating range.  This last assumption is extremely significant 
because the described empirical models (in fact all nonlinear empirical models) are unable to extrapolate 
outside the range in which they have been trained.  If the input data fall outside of the training space, there 
can be no confidence in the model’s prediction for that input.  This fact may not pose great concern for 
nuclear utilities, because they generally operate at 100% power in a standard configuration.  However, 
seasonal variations, abnormal operations, and equipment repair or failure can cause a change in the 
operating conditions and a change in the measured plant parameter correlations.  Therefore, operational 
processes must be in place to ensure that the model is operating within the training region.  The PEANO 
system developed by the Halden Reactor Group in Norway has a reliability assessment module that 
verifies that the model is operating within the training region.  This module uses distance measures 
between the current state and trained states to determine if the operating condition is inside the trained 
region.  A similar module should be integrated into all safety-critical OLM systems, and procedures 
should be in place that defines how to proceed when the model’s training data no longer cover the 
operating space.  For a more thorough discussion of data and model quality, the reader is referred to 
Chaps. 4 and 6 in the first volume of this series and Chaps. 4 and 5 of Volume 3. 
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7.2.2 Uncertainty assumptions 

The assumptions in the uncertainty analysis play a large role in determining the adequacy of OLM.  
Since the ADVOLM and MAVD drift limits (discussed in detail in Volume 1 of this series) are calculated 
from a model’s uncertainty, it is necessary that the uncertainty analysis be correct and the underlying 
assumptions fully understood and met.  

All of the uncertainty analyses presented in this report operate under the assumption that the 
underlying modeling technique is appropriate for the data set.  For example, the analyses assume that a 
linear model is not being applied to nonlinearly related data.  All of the modeling techniques presented in 
this report are considered Universal Function Approximators [Hornick 1989] and are appropriate for 
OLM applications, so this assumption is of little concern unless the model complexity is overly 
constrained through reduction of hidden neurons in the AANN or reduction of the kernel bandwidth in 
AAKR or AAMSET.  If a bandwidth is set too high or there are too few neurons, a model oversmoothes 
the data, and the features become obscured with an increase in bias.  Conversely, if a bandwidth is set too 
low or too many neurons are included in the architecture, a model will fit the noise in the data rather than 
the underlying functional relationship, resulting in an increased variance.  The key is that a model should 
have the proper bandwidth or number of neurons to allow its complexity to match the complexity of the 
data.  Figure 7-1 illustrates this principle.  The figure shows that when a kernel bandwidth of 0.05 is used, 
the bandwidth is too small, and the model fits each data point, including the noise, perfectly.  When a 
bandwidth of 0.5 is used, the predictions smooth some of the noise.  However, when a bandwidth of 50 is 
used, the model oversmoothes the data resulting in the prediction being similar to the mean value of the 
data.  

 

 142



 

0 50 100 150 200 250 300 350 400 450 500
732

733

734

735

736

737

738

739  

Data
Predictions

 
(a) 

0 50 100 150 200 250 300 350 400 450 500
733

733.5

734

734.5

735

735.5

736

736.5  

Data
Predictions

 
(b) 

0 50 100 150 200 250 300 350 400 450 500
733

733.5

734

734.5

735

735.5

736

736.5
Data
Predictions
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Fig. 7-1.  AAKR model of turbine pressure sensor with a (a) kernel bandwidth of 0.05, (b) kernel bandwidth 
of 0.5, and (c) kernel bandwidth of 5. 
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Another concern with the uncertainty analyses is how to obtain the final OLM uncertainty estimate.  
The Monte Carlo analyses yields uncertainty estimates for each observation in the validation set.  
However, a single uncertainty value is needed to set the drift limits.  The proposed method uses the 95th 
percentile largest uncertainty estimate selected from the point-wise estimates and then uses a t-value for a 
95% confidence when converting the standard error to a CI or PI.  This results in a conservative, 95/95 
estimate of the single uncertainty value.  

7.2.3 Bootstrap assumptions 

The direct bootstrap method for uncertainty quantification requires fewer assumptions and is 
consistent with the random character of the predictors in many empirical modeling applications.  The only 
assumptions inherent in the bootstrap method are that the noise is truly random and the errors are 
independent.  These assumptions are usually by nuclear data sets unless special situations arise.  

An additional concern when using the bootstrap is that enough simulations have been performed to 
gain an accurate prediction of the model’s true statistics.  There is no rule dictating how many simulations 
are necessary to achieve adequate results.  Generally, for most OLM applications, the number of 
simulations should be in the thousands to ensure that the samples have been thoroughly exercised and that 
the resulting uncertainty estimate converges to the true uncertainty value.  It is possible to check that the 
number of simulations is adequate by repeating the bootstrap process several times and verifying that the 
results have stabilized.  This may prove to be extremely time-consuming, but it is necessary to produce 
confidence in the results and is performed off-line when time is not as much of a concern. 

7.2.4 LHS assumptions 

LHS requires more assumptions than the direct bootstrap procedure.  Along with the assumptions 
present in bootstrap sampling, LHS also assumes that each variable’s probability distribution can be 
adequately modeled.  Fortunately, with a large number of observations, the data tend to be normally 
distributed, in accordance with the Central Limit Theorem.  However, it is not wise to simply assume 
normally distributed data.  Rather, statistical tests must be performed to predict and verify the data’s 
distribution.  This task becomes even more complicated with multivariate data when joint probability 
distributions must be determined.  The difficulty of determining the data’s distribution may outweigh the 
benefit of needing fewer simulations to estimate the model’s variance.  However, if LHS is employed, it 
is important to realize that the probability distributions of the data set must be properly modeled in order 
for the technique to be valid. 

7.2.5 Assumptions in the analytical uncertainty methods 

The major assumption of the analytic equations for the AANN is that the variance-covariance matrix 
S may be represented by: 

 
1T .

−
⎡ ⎤= ⎣ ⎦S F F  (7.2.5.1) 

 
From Eq. (7.2.5.1), it is assumed that it is possible to derive an estimate of the relative change in a 

model’s predictions vs its parameters for a given input and that the prediction is valid.  There is also the 
assumption that the model inputs are noise-free.  Finally, the AANN equations rely on the assumption 
that a first-order Taylor series expansion of a model about its parameters is sufficient to describe the 
sensitivity.  This requires that the sensitivity can be linearized around the operating point, which is valid 
because it performs this calculation for each sample. 
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If these assumptions are not completely met, the uncertainty estimates inherently increase.  
For example, if the actual operating condition moves away from the trained conditions, the uncertainty 
estimates increase.  These effects will be explored in more detail and reported in Volume 3 of this series. 

In addition to the method-specific assumptions, there are several major assumptions in the PI and CI 
equations themselves.  First, it is assumed that the errors are normally distributed, giving a proper 
estimate of a 95% uncertainty.  This is a reasonable expectation and can be validated through statistical 
analysis.  Additionally, the PI and CI equations assume that the bias-variance decomposition is a valid 
method for estimating uncertainty and that the methods for estimating bias, discussed in Sect. 4.3, are 
valid.  These decompositions have been reported throughout the literature and are considered valid. 

7.2.6 Assumptions in estimating the bias 

The methods presented in this report to estimate the bias component of the uncertainty all assume 
that the model’s bias is constant for each variable and may be approximated by its expected value.  
Although this assumption is generally true, for areas of high nonlinear correlations, which are 
characterized by sharp curvature in the data relationships, the bias will increase significantly and may 
invalidate this assumption.  However, nuclear process data are generally collected when a plant is 
operating at 100% power and does not exhibit much curvature.  Another assumption in the bias estimation 
is that “true” or noise-free signals can be determined.  A “true” signal is assumed to have all of the 
independent noise removed, while retaining the common process noise.  These noise-free signals are 
needed to estimate the bias term in the uncertainty analysis, as well as to quantify the noise, and its 
distribution, present in each sensor input if LHS is used in the analyses.  Thus, the following section 
discusses the assumptions surrounding several of the denoising methods. 

7.2.7 Wavelet denoising assumptions 

The major assumptions of wavelet denoising are that wavelet decomposition and reconstruction have 
the ability to estimate the “true” signal.  These techniques are becoming widespread, and there is a 
growing base of information that supports this assumption.  The other assumptions are associated with 
scoring each denoising parameter set’s performance.  The scoring assumptions include the following:  
(1) the noise is normally distributed and uncorrelated with itself (white); (2) the noise removed is 
uncorrelated with other process variables; and (3) the smoothing has maximally reduced the variance 
while satisfying the previous assumptions.  These assumptions are somewhat appropriate for OLM, with 
the exception of normally distributed noise.  This assumption comes from the central limit theorem, 
which states that the summation of noise sources with any distribution tends toward normal as the number 
of sources tends toward infinity.  If there are dominating sources, this might not hold.  Chapter 7 of 
Volume 3 of this NUREG series investigates this in detail.   

7.2.8 Independent component analysis assumptions 

The major assumptions of the ICA algorithm are that the data are time-invariant.  Because plants 
usually operate at nearly 100% power, the assumption of time-invariant data is usually met.  Obviously, 
when the plant undergoes a transient, the data become nonstationary, and the ICA method fails.  
Generally, transient data are often excluded from OLM estimations.  However, if transient data are being 
used for some reason, such as a reliability analysis during startup or shutdown, the fact that this 
assumption is violated must be realized and a different denoising method employed.  Additionally, the 
ICA algorithm is usually applied to data off-line to estimate noise variances.  The on-line implementation 
has not been commercially applied to OLM, and the stationarity of the signal should not be a concern.  

The second restriction in using ICA denoising is that it cannot separate more than one Gaussian 
component.  If two Gaussian components are mixed, they cannot be separated in the future.  This is not a 
concern because the underlying process parameter rarely has a Gaussian distribution that needs to be 
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separated from the Gaussian noise components.  Recall that noise sources are commonly assumed to be 
Gaussian because when several noise sources are added, they tend toward Gaussian; this does not imply 
that the original sources were Gaussian.  Chapter 7 of Volume 3 of this NUREG series investigates 
denoising in detail and shows that the method of denoising has little effect on the predictive uncertainty; 
therefore, complex filtering techniques such as ICA would probably not be used. 

7.2.9 Filtering 

The Analysis and Measurement Services Corporation (AMS) has implemented filtering algorithms in 
their OLM implementation at Sizewell B in the United Kingdom.  Their argument is that drift is a very 
slow phenomena and can be estimated by filtering to reduce the variance component of uncertainty.  This 
is valid if the data are sampled so that the filter bandwidth is above the dynamics of the process variable.  
Stated another way; the filter bandwidth should be set to remove the random variations, not the process 
variations.  More information on the Sizewell B implementation is available through a report published 
by EPRI in 2006 [EPRI and British Energy Group (2006)].  

The concept of filtering to remove the variance has led some to believe that the only uncertainty 
component of interest should be the bias portion and that the variance portion can be neglected.  Because 
the variance portion of the uncertainty is usually many times larger than the bias portion, this argument 
could have a significant impact on the drift limits.  However, the analytical equations used to estimate the 
variance portion of the uncertainty are also sensitive to the assumptions inherent in the technique as 
discussed in Sect. 7.2.4 and provide a fail-safe mechanism to validate the assumptions.  The bootstrap 
technique is not sensitive to changing assumptions because the uncertainty is estimated offline.  This is 
another reason why additional techniques to validate assumptions, such as operating condition coverage, 
are necessary, especially for the Monte Carlo techniques.  For these reasons, the total uncertainty (bias 
plus variance) should be estimated and used to set the drift limits. 

7.2.10 Detectability 

Although all of the performance metrics discussed in Chap. 2 are important, auto and cross-
sensitivity are of particular concern.  If a model’s cross or auto-sensitivity is much larger than 0, then the 
model will be affected by drift and may be unsuitable for OLM.  Even with small sensitivity values, a 
model will still be unable to detect drift as accurately as it should, and the drift limits for the OLM system 
may need to be modified to reflect this fact.  For instance, if a model has an auto-sensitivity of 0.2 and the 
drift limit is at 1%, the drift limit may need to be changed to 0.8% to account for the fact that the model 
will exhibit a 2% drift if any of the sensors in it have drifted.  EULM fault detectability (discussed in 
Chap. 2) provides a method for modifying the drift limits accordingly.  Still, it is clear that this 
detectability issue warrants exploration so that the proper safeguards can be in place.  Volume 3 in this 
series will further examine both model sensitivity and detectability and their impact on OLM. 

7.2.11 Setting drift limits 

Establishment of the ADVOLM and MAVD is a plant-specific task.  However, certain 
considerations must be taken into account when calculating these limits.  These include 

– monitoring interval and drift rate assumption, 
– single-point monitoring penalty, 
– predictive uncertainty, and 
– sensitivity. 

The concern with monitoring interval arises when plants choose not to perform OLM on a continual 
basis.  The sensor calibration uncertainties, which are used to compute the MAVD, are unique to each 
plant and/or sensor.  Although these terms are rather straightforward in that they are stipulated in the 
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plant’s set point calculation documentation, the monitoring frequency still must be considered when using 
them to establish the drift limit.  The sensor drift (which is a term included in the set point calculation) is 
the specified allowance for drift at the interval between refueling outages.  If OLM is not conducted 
continuously, then the full sensor drift value cannot be used because there is still the possibility that the 
sensor has drifted between surveillances.  For instance, if OLM calibration assessment is performed 
quarterly, then the sensor drift value is scaled from its original value, which gives the drift allowance 
during the entire fuel cycle, to a value that subtracts off the small drift allowance for the time between 
surveillances.  To perform this subtraction, assumptions about the drift rate must be made.  Most 
commonly, the drift is assumed to be linear and the allowance that accounts for the interval between 
surveillances is calculated using this assumption. 

Additionally, the single-point monitoring penalty, which is also used to compute the MAVD, must 
be identified for each individual sensor.  EPRI [2000] conducted a large drift study.  The results of this 
study supplied generic single-point monitoring penalties for a variety of sensor types and models.  
However, if a sensor is not included in the EPRI drift study, the single-point monitoring penalty must be 
calculated using historical calibration data.  If these data are unavailable or if too few data are available, 
the plant must show that the generic EPRI penalty for a similar instrument is applicable. 

Finally, the predictive uncertainty term must be quantified for each specific model used at each plant.  
The uncertainty calculation methods provided in this report are not necessarily the only correct way to 
compute a model’s predictive uncertainty.  Although these methods are known to be correct and result in 
safe systems when the assumptions are met, many other uncertainty derivations are found in literature and 
could potentially be applied to OLM.  NIST Technical Note 1297 [1994] outlines many other methods for 
computing uncertainty.  As long as a plant has a sound technical basis behind its uncertainty calculations, 
the calculations should be valid and appropriate for determining the ADVOLM.  However, as discussed 
in Sect. 2 and reiterated in Sect. 7.10, the MAVD must also consider a model’s sensitivity (or robustness).   

Determining the ADVOLM is also a problematical task.  The ADVOLM is a conservative limit set 
slightly below the MAVD that when exceeded declares that the sensor is in need of calibration at the next 
outage (rather than declaring the sensor inoperable.)  If the ADVOLM is set too high, there is a greater 
risk of an instrument exceeding the ADVOLM and being declared inoperable before it has a chance to be 
calibrated.  Conversely, if the ADVOLM is set too low, more instruments will exceed it, and unnecessary 
calibrations will be performed.  Historical data can be analyzed to determine a value for the ADVOLM 
based on an instrument’s normal operation.   

7.3 Conclusions 

This report explains the role of the AANN, AAKR, and AAMSET model in an OLM system.  
In addition to presenting the theory behind these models, the report attempts to clarify each model’s 
merits and perceived shortcomings in its application to OLM.  Several methods for quantifying the 
different modeling technique’s uncertainty are derived.  Finally, each of the models, along with the 
various methods of uncertainty analysis, are applied to both simulated and actual nuclear plant data.  The 
applications demonstrated that under normal operating conditions the modeling techniques and 
uncertainty analyses presented in this report yield results suitable for OLM.  The calculated uncertainty 
values appear to accurately reflect the true predictive uncertainty of the specific models, with good 
agreement between the analytical and Monte Carlo based estimates.  Furthermore, these calculated 
uncertainty values were usually small enough to show that OLM could be used to detect sensor drift 
before limits are reached.  To elaborate, if the technique’s predictive uncertainty had been too great, the 
acceptable band would have been reduced to the point that it no longer covers the sensor’s normal 
operating region, and OLM would have been ineffective, as it would declare normally operating sensors 
as needing calibration.  However, the uncertainty values for both the real and simulated data were 
reasonable and fell within a normal sensor’s acceptable band.  Although this application produced 
promising results, it failed to validate many of the assumptions inherent in OLM modeling.  The majority 
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of these assumptions are addressed in the previous section.  Many of these assumptions are concealed 
until an abnormality occurs in the OLM system.  Thus, Volume 3 of this NUREG series, entitled Limiting 
Case Studies, will apply the modeling and uncertainty analysis techniques to a wide variety of plant data 
sets and model development routines to explore the modeling assumptions and limitations.  

Volume 3 will be the final report in this NUREG series and summarizes seven case studies 
investigating the effects of model development and assumptions on model performance.  Two case 
studies concern the effect of not meeting model assumptions: evaluating query data outside the training 
region and training with faulty data.  Recommendations are given for identifying and correcting the 
problems caused by not meeting these important data assumptions.  The third and fourth case studies 
investigate the effects of high noise levels on model performance and compare different methods of data 
denoising, respectively.  The remaining three case studies examine different features of model 
development by comparing vector selection methods, different numbers of memory vectors, and robust 
distance measures.  Methodologies to determine the appropriate model development parameters for each 
of these cases are outlined.  Finally, a section is included that highlights the special considerations needed 
for redundant-sensor model architectures.   
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